## **Baseline Assessment – Stream Attributes**

# Reach S-IJ10 (Timber Mat Crossing) Perennial Spread I Franklin County, Virginia

| Data                                    | Included                               |  |  |  |  |
|-----------------------------------------|----------------------------------------|--|--|--|--|
| Photos                                  | ✓                                      |  |  |  |  |
| SWVM Form                               | ✓                                      |  |  |  |  |
| FCI Calculator and HGM Form             | N/A – Perennial stream (not shadeable) |  |  |  |  |
| RBP Physical Characteristics Form       | ✓                                      |  |  |  |  |
| Water Quality Data                      | ✓                                      |  |  |  |  |
| RBP Habitat Form                        | ✓                                      |  |  |  |  |
| RBP Benthic Form                        | ✓                                      |  |  |  |  |
| Benthic Identification Sheet            | ✓                                      |  |  |  |  |
| Wolman Pebble Count                     | ✓                                      |  |  |  |  |
| RiverMorph Data Sheet                   | ✓                                      |  |  |  |  |
| USM Form (Virginia Only)                | ✓                                      |  |  |  |  |
| Longitudinal Profile and Cross Sections | ✓                                      |  |  |  |  |



Location, Orientation, Photographer Initials: Downstream view of ROW looking SE, TC



Location, Orientation, Photographer Initials: Upstream view of ROW looking NW, TC



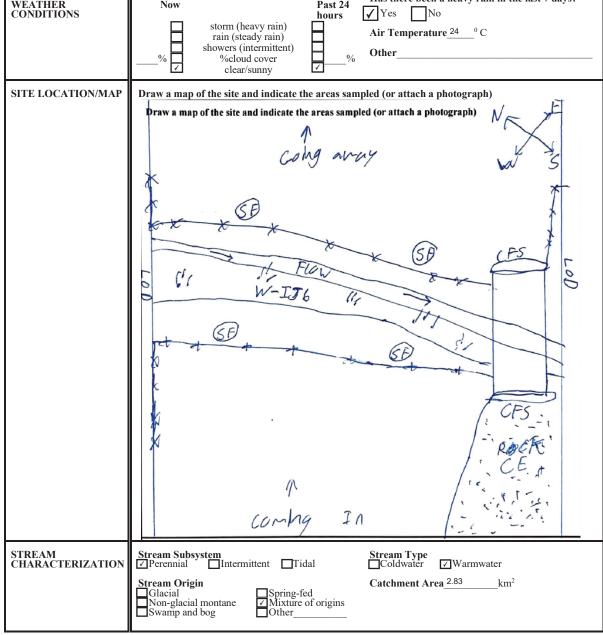
Location, Orientation, Photographer Initials: Standing on LB looking at RB along pipe centerline looking SW, TC



Location, Orientation, Photographer Initials: Standing on RB looking at LB along pipe centerline looking NE, TC

## Spread I Stream S-IJ10 (Timber Mat) Franklin County




Location, Orientation, Photographer Initials: Downstream conditions outside of ROW looking S, TC

 $L: \cline{L:l22000s} \cline{$ 

| USACE FILE NO./ Project Name: (v2.1, Sept 2015)                  |                       | Мо         | untain Va | alley Pipeline                                                          |                    | COORDINATES:<br>imal Degrees) | Lat. | 37.089179                                                        | Lon.                  | -80.005026  | WEATHER:                                                      |                       | Sunny        | DATE:                                                          | August 27           | 7, 2021     |
|------------------------------------------------------------------|-----------------------|------------|-----------|-------------------------------------------------------------------------|--------------------|-------------------------------|------|------------------------------------------------------------------|-----------------------|-------------|---------------------------------------------------------------|-----------------------|--------------|----------------------------------------------------------------|---------------------|-------------|
| IMPACT STREAM/SITE ID (watershed size {acreage}                  |                       |            |           | S-IJ                                                                    | J10                |                               |      | MITIGATION STREAM CLASS./<br>(watershed size {acreage            |                       |             | :<br>:                                                        |                       |              | Comments:                                                      |                     |             |
| STREAM IMPACT LENGTH:                                            | 20                    | FORM O     |           | RESTORATION (Levels I-III)                                              |                    | OORDINATES:<br>imal Degrees)  | Lat. |                                                                  | Lon.                  |             | PRECIPITATION PAST 48 HRS:                                    |                       | None         | Mitigation Length:                                             |                     |             |
| Column No. 1- Impact Existing                                    | g Condition (Deb      | oit)       |           | Column No. 2- Mitigation Existing Co                                    | ondition - Basel   | line (Credit)                 |      | Column No. 3- Mitigation Pro<br>Post Completion                  |                       | 'ears       | Column No. 4- Mitigation Pro                                  |                       | ars          | Column No. 5- Mitigation Projecte                              | d at Maturity (Cr   | redit)      |
| Stream Classification:                                           | Perei                 | nnial      |           | Stream Classification:                                                  |                    |                               |      | Stream Classification:                                           |                       | 0           | Stream Classification:                                        | 0                     |              | Stream Classification:                                         | 0                   |             |
| Percent Stream Channel SI                                        | lope                  | 1.67       |           | Percent Stream Channel Slo                                              | pe                 |                               |      | Percent Stream Channel SI                                        | ope                   | 0           | Percent Stream Channel S                                      | lope                  | 0            | Percent Stream Channel Slo                                     | ope                 | 0           |
| HGM Score (attach d                                              | lata forms):          |            |           | HGM Score (attach d                                                     | ata forms):        |                               |      | HGM Score (attach                                                | data forms):          |             | HGM Score (attach d                                           | lata forms):          |              | HGM Score (attach da                                           | ta forms):          |             |
|                                                                  |                       | Average    |           |                                                                         |                    | Average                       |      |                                                                  |                       | Average     |                                                               |                       | Average      |                                                                |                     | Average     |
| Hydrology<br>Biogeochemical Cycling                              |                       | 0          | II-       | Hydrology<br>Biogeochemical Cycling                                     |                    | 0                             |      | Hydrology<br>Biogeochemical Cycling                              |                       | 0           | Hydrology<br>Biogeochemical Cycling                           |                       | 0            | Hydrology<br>Biogeochemical Cycling                            |                     | 0           |
| Habitat PART I - Physical, Chemical and                          | l Biological Indic    | ators      |           | Habitat PART I - Physical, Chemical and                                 | Biological Indi    | cators                        |      | Habitat PART I - Physical, Chemical ar                           | nd Biological Ind     | icators     | Habitat  PART I - Physical, Chemical and                      | Biological Indica     | ators        | Habitat  PART I - Physical, Chemical and E                     | Biological Indicat  | itors       |
|                                                                  | Points Scale Range    | Site Score |           |                                                                         | Points Scale Range | Site Score                    |      |                                                                  | Points Scale Range    | Site Score  |                                                               | Points Scale Range    | Site Score   |                                                                | Points Scale Range  | Site Score  |
| PHYSICAL INDICATOR (Applies to all streams                       | s classifications)    |            |           | PHYSICAL INDICATOR (Applies to all streams cl                           | lassifications)    |                               |      | PHYSICAL INDICATOR (Applies to all streams                       | classifications)      |             | PHYSICAL INDICATOR (Applies to all stream                     | s classifications)    |              | PHYSICAL INDICATOR (Applies to all streams of                  | classifications)    |             |
| USEPA RBP (High Gradient Data Sheet)                             |                       |            |           | USEPA RBP (Low Gradient Data Sheet)                                     |                    |                               |      | USEPA RBP (High Gradient Data Sheet)                             |                       |             | USEPA RBP (High Gradient Data Sheet)                          |                       |              | USEPA RBP (High Gradient Data Sheet)                           |                     |             |
| Epifaunal Substrate/Available Cover     Embeddedness             | 0-20                  | 18<br>13   |           | Epifaunal Substrate/Available Cover     Pool Substrate Characterization | 0-20               |                               |      | Epifaunal Substrate/Available Cover     Embeddedness             | 0-20                  |             | Epifaunal Substrate/Available Cover     Embeddedness          | 0-20                  |              | Epifaunal Substrate/Available Cover     Embeddedness           | 0-20                |             |
| 3. Velocity/ Depth Regime                                        | 0-20                  | 10         |           | 3. Pool Variability                                                     | 0-20<br>0-20       |                               |      | Velocity/ Depth Regime                                           | 0-20                  |             | Z. Embeddedness     3. Velocity/ Depth Regime                 | 0-20                  |              | Velocity/ Depth Regime                                         | 0-20                |             |
| 4. Sediment Deposition                                           | 0-20                  | 10         |           | 4. Sediment Deposition                                                  | 0-20               |                               |      | Velocity Depth Regime     Sediment Deposition                    | 0-20                  |             | 4. Sediment Deposition                                        | 0-20                  |              | 4. Sediment Deposition                                         | 0-20                |             |
| 5. Channel Flow Status                                           | 0-20                  | 13         |           | 5. Channel Flow Status                                                  | 0-20               |                               |      | 5. Channel Flow Status                                           | 0-20                  |             | 5. Channel Flow Status                                        | 0-20                  |              | 5. Channel Flow Status                                         | 0-20                |             |
| 6. Channel Alteration                                            | 0-20                  | 19         |           | 6. Channel Alteration                                                   | 0-20               |                               |      | 6. Channel Alteration                                            | 0-20                  |             | 6. Channel Alteration                                         | 0-20                  |              | 6. Channel Alteration                                          | 0-20                |             |
| 7. Frequency of Riffles (or bends)                               | 0-20                  | 17         |           | 7. Channel Sinuosity                                                    | 0-20               |                               |      | 7. Frequency of Riffles (or bends)                               | 0-20                  |             | 7. Frequency of Riffles (or bends)                            | 0-20                  |              | 7. Frequency of Riffles (or bends)                             | 0-20                |             |
| 8. Bank Stability (LB & RB)                                      | 0-20                  | 10         |           | 8. Bank Stability (LB & RB)                                             | 0-20               |                               |      | 8. Bank Stability (LB & RB)                                      | 0-20                  |             | 8. Bank Stability (LB & RB)                                   | 0-20                  |              | 8. Bank Stability (LB & RB)                                    | 0-20                |             |
| 9. Vegetative Protection (LB & RB)                               | 0-20                  | 9          |           | 9. Vegetative Protection (LB & RB)                                      | 0-20               |                               |      | 9. Vegetative Protection (LB & RB)                               | 0-20                  |             | 9. Vegetative Protection (LB & RB)                            | 0-20                  |              | 9. Vegetative Protection (LB & RB)                             | 0-20                |             |
| 10. Riparian Vegetative Zone Width (LB & RB)                     | 0-20                  | 13         |           | 10. Riparian Vegetative Zone Width (LB & RB)                            | 0-20               |                               |      | 10. Riparian Vegetative Zone Width (LB & RB)                     | 0-20                  |             | 10. Riparian Vegetative Zone Width (LB & RB)                  | 0-20                  |              | 10. Riparian Vegetative Zone Width (LB & RB)                   | 0-20                |             |
| Total RBP Score                                                  | Suboptimal            | 132        | II-       | Total RBP Score                                                         | Poor               | 0                             |      | Total RBP Score                                                  | Poor                  | 0           | Total RBP Score                                               | Poor                  | 0            | Total RBP Score                                                | Poor                | 0           |
| Sub-Total                                                        |                       | 0.66       |           | Sub-Total                                                               |                    | 0                             |      | Sub-Total                                                        |                       | 0           | Sub-Total                                                     |                       | 0            | Sub-Total                                                      |                     | 0           |
| CHEMICAL INDICATOR (Applies to Intermitter                       | nt and Perennial Str  | eams)      |           | CHEMICAL INDICATOR (Applies to Intermittent a                           | and Perennial Stre | eams)                         |      | CHEMICAL INDICATOR (Applies to Intermitter                       | nt and Perennial Stre | eams)       | CHEMICAL INDICATOR (Applies to Intermitte                     | nt and Perennial Stre | eams)        | CHEMICAL INDICATOR (Applies to Intermittent                    | and Perennial Strea | ams)        |
| WVDEP Water Quality Indicators (General<br>Specific Conductivity | l)                    |            |           | WVDEP Water Quality Indicators (General) Specific Conductivity          |                    |                               |      | WVDEP Water Quality Indicators (General<br>Specific Conductivity | )                     |             | WVDEP Water Quality Indicators (General Specific Conductivity | l)                    |              | WVDEP Water Quality Indicators (General) Specific Conductivity |                     |             |
| Specific Conductivity                                            |                       |            |           | Specific Colludetivity                                                  |                    |                               |      | opecine conductivity                                             |                       |             | Specific conductivity                                         |                       |              | Specific Conductivity                                          |                     |             |
| <=99 - 90 points                                                 | 0-90                  | 66         |           |                                                                         | 0-90               |                               |      |                                                                  | 0-90                  |             |                                                               | 0-90                  |              |                                                                | 0-90                |             |
| pH .                                                             |                       | (0)        |           | pH                                                                      |                    |                               |      | рН                                                               |                       |             | рН                                                            |                       |              | pH                                                             |                     |             |
|                                                                  | 0-80                  | 7.4        |           |                                                                         | 5-90 0-1           |                               |      |                                                                  | 5-90 0-1              |             |                                                               | 5-90 0-1              |              |                                                                | 5-90 0-1            |             |
| 6.0-8.0 = 80 points                                              |                       |            |           | DO                                                                      |                    |                               |      | DO.                                                              |                       |             | DO.                                                           |                       |              | DO                                                             |                     |             |
| В                                                                |                       |            | -         |                                                                         |                    |                               |      | ВО                                                               | Т                     |             | БО                                                            | T                     |              | ВО                                                             |                     |             |
| >5.0 = 30 points                                                 | 10-30                 | 8.03       |           |                                                                         | 10-30              |                               |      |                                                                  | 10-30                 |             |                                                               | 10-30                 |              |                                                                | 10-30               |             |
| Sub-Total                                                        |                       | 1          |           | Sub-Total                                                               | •                  | 0                             |      | Sub-Total                                                        | •                     | 0           | Sub-Total                                                     |                       | 0            | Sub-Total                                                      |                     | 0           |
| BIOLOGICAL INDICATOR (Applies to Intermit                        | ttent and Perennial S | Streams)   |           | BIOLOGICAL INDICATOR (Applies to Intermittent and Perennial Streams)    |                    |                               |      | BIOLOGICAL INDICATOR (Applies to Interm                          | ittent and Perenn     | al Streams) | BIOLOGICAL INDICATOR (Applies to Interr                       | mittent and Perenni   | ial Streams) | BIOLOGICAL INDICATOR (Applies to Intermi                       | ttent and Perennial | al Streams) |
| WV Stream Condition Index (WVSCI)                                | <u> </u>              |            |           | WV Stream Condition Index (WVSCI)                                       |                    |                               |      | WV Stream Condition Index (WVSCI)                                |                       |             | WV Stream Condition Index (WVSCI)                             |                       |              | WV Stream Condition Index (WVSCI)                              |                     |             |
| Good                                                             | 0-100 0-1             | 76.1       |           |                                                                         | 0-100 0-1          |                               |      |                                                                  | 0-100 0-1             |             |                                                               | 0-100 0-1             |              |                                                                | 0-100 0-1           |             |
| Sub-Total                                                        |                       | 0.761      |           | Sub-Total                                                               |                    | 0                             |      | Sub-Total                                                        |                       | 0           | Sub-Total                                                     |                       | 0            | Sub-Total                                                      |                     | 0           |
| PART II - Index and U                                            | Jnit Score            |            |           | PART II - Index and U                                                   | Init Score         |                               |      | PART II - Index and                                              | Unit Score            |             | PART II - Index and U                                         | Jnit Score            |              | PART II - Index and Ur                                         | nit Score           |             |
|                                                                  |                       |            |           |                                                                         |                    |                               |      |                                                                  |                       |             |                                                               |                       |              |                                                                |                     |             |
| Index                                                            | Linear Feet           | Unit Score |           | Index                                                                   | Linear Feet        | Unit Score                    |      | Index                                                            | Linear Feet           | Unit Score  | Index                                                         | Linear Feet           | Unit Score   | Index                                                          | Linear Feet         | Unit Scor   |
| 0.907                                                            | 20                    | 46.44      |           | •                                                                       | 0                  | 0                             |      | •                                                                | 0                     | 0           |                                                               | 0                     | 0            |                                                                |                     |             |

# PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

| STREAM NAME S-IJ10     |               | LOCATION Roanoke County                                  |                                                                                          |  |  |  |  |
|------------------------|---------------|----------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|
| STATION #              | RIVERMILE     | STREAM CLASS Perennial                                   |                                                                                          |  |  |  |  |
| LAT <u>37.089179</u> I | LONG80.005026 | RIVER BASIN Upper Roan                                   | noke                                                                                     |  |  |  |  |
| STORET#                |               | AGENCY VADEQ                                             |                                                                                          |  |  |  |  |
| INVESTIGATORS KD, T    | īC            |                                                          |                                                                                          |  |  |  |  |
| FORM COMPLETED BY      | KD            | DATE 8/27/21<br>TIME 9:00 AM                             | REASON FOR SURVEY Baseline Assessment                                                    |  |  |  |  |
|                        |               |                                                          |                                                                                          |  |  |  |  |
| WEATHER<br>CONDITIONS  | rain (s       | n (heavy rain) (steady rain) (steady rain) (steady rain) | Has there been a heavy rain in the last 7 days?  ✓ Yes No  Air Temperature 24 0 C  Other |  |  |  |  |



# PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

| WATERS<br>FEATURI              |                                                     | Predom Fores Field Agric Resid           | Pasture Indu                                                                                                                                                  | mercial<br>strial                 | Local Watershed NPS  ☑ No evidence ☐ Sor ☐ Obvious sources  Local Watershed Eros ☑ None ☐ Moderate | ne potential sources                                               |  |  |  |  |  |
|--------------------------------|-----------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|
| RIPARIA<br>VEGETA<br>(18 meter | TION                                                |                                          | Indicate the dominant type and record the dominant species present  ☐ Trees ☐ Shrubs ☐ Grasses ☐ Herbaceous  Dominant species present  Regweed (Ambrosia sp.) |                                   |                                                                                                    |                                                                    |  |  |  |  |  |
| INSTREA<br>FEATURI             |                                                     | Estimat<br>Samplin<br>Area in<br>Estimat | km² (m²x1000)ed Stream Deptho                                                                                                                                 | m m² km²                          | _ , , ,                                                                                            | Run <u>∘</u> %                                                     |  |  |  |  |  |
| LARGE V<br>DEBRIS              | VOODY                                               | LWD<br>Density                           | of LWD                                                                                                                                                        | _m²/km² (LWD/                     | reach area)                                                                                        |                                                                    |  |  |  |  |  |
| AQUATION VEGETATION (DS, US)   |                                                     | Roote Floati                             | e the dominant type and emergent ng Algae and species present of the reach with aq                                                                            | Rooted submerge<br>Attached Algae |                                                                                                    | Free floating                                                      |  |  |  |  |  |
| WATER (                        | QUALITY                                             | Specific  Dissolve  pH 74,7              | rature 21.3, 21.4 0 C Conductance 66.0, 67.9 ed Oxygen 8.03, 6.72  3 tty ttrument Used VA2                                                                    |                                   |                                                                                                    | Other NA  Globs Flecks  ured)                                      |  |  |  |  |  |
| SEDIMEN<br>SUBSTRA             |                                                     | Odors Norm Chem Other Oils               |                                                                                                                                                               |                                   | Lρoking at stones which are the undersides black                                                   | Paper fiber Sand Other NA ch are not deeply embedded, ck in color? |  |  |  |  |  |
| INC                            |                                                     | STRATE (                                 | COMPONENTS<br>00%)                                                                                                                                            |                                   | ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)                                 |                                                                    |  |  |  |  |  |
| Substrate<br>Type              | Diamet                                              | er                                       | % Composition in Sampling Reach                                                                                                                               |                                   | Characteristic                                                                                     | % Composition in<br>Sampling Area                                  |  |  |  |  |  |
| Bedrock<br>Boulder             | > 256 mm (10")                                      | )                                        | 0                                                                                                                                                             | Detritus                          | sticks, wood, coarse plant<br>materials (CPOM)                                                     | 0                                                                  |  |  |  |  |  |
| Cobble<br>Gravel               | 64-256 mm (2.5<br>2-64 mm (0.1"-2                   |                                          | 30<br>60                                                                                                                                                      | Muck-Mud                          | black, very fine organic (FPOM)                                                                    | 0                                                                  |  |  |  |  |  |
| Sand<br>Silt<br>Clay           | 0.06-2mm (gritt<br>0.004-0.06 mm<br>< 0.004 mm (sli |                                          | 10<br>0<br>0                                                                                                                                                  | Marl                              | grey, shell fragments                                                                              | 0                                                                  |  |  |  |  |  |

#### HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

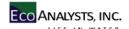
| STREAM NAME S-IJ10                          | LOCATION Roanoke County                                            |  |  |  |  |
|---------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| STATION # RIVERMILE                         | STREAM CLASS Perennial                                             |  |  |  |  |
| LAT <u>37.089179</u> LONG <u>-80.005026</u> | RIVER BASIN Upper Roanoke                                          |  |  |  |  |
| STORET#                                     | AGENCY VADEQ                                                       |  |  |  |  |
| INVESTIGATORS KD, TC                        |                                                                    |  |  |  |  |
| FORM COMPLETED BY KD                        | DATE 8/27/21 REASON FOR SURVEY TIME 9:00 AM PM Baseline Assessment |  |  |  |  |

|                                              | Habitat                                       |                                                                                                                                                                                                                                                                               | Condition                                                                                                                                                                                                                                                   | Category                                                                                                                                                                                                                                  |                                                                                                                                                                                               |  |  |
|----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                              | Parameter                                     | Optimal                                                                                                                                                                                                                                                                       | Suboptimal                                                                                                                                                                                                                                                  | Marginal                                                                                                                                                                                                                                  | Poor                                                                                                                                                                                          |  |  |
|                                              | 1. Epifaunal<br>Substrate/<br>Available Cover | Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | 40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). | 20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.                                                                                                                        | Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.                                                                                                      |  |  |
|                                              | SCORE 18                                      | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |
| n sampling reach                             | 2. Embeddedness                               | Gravel, cobble, and<br>boulder particles are 0-<br>25% surrounded by fine<br>sediment. Layering of<br>cobble provides diversity<br>of niche space.                                                                                                                            | Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.                                                                                                                                                                               | Gravel, cobble, and<br>boulder particles are 50-<br>75% surrounded by fine<br>sediment.                                                                                                                                                   | Gravel, cobble, and<br>boulder particles are more<br>than 75% surrounded by<br>fine sediment.                                                                                                 |  |  |
| ted in                                       | SCORE 13                                      | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |
| Parameters to be evaluated in sampling reach | 3. Velocity/Depth<br>Regime                   | All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)                                                                                                                                             | Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).                                                                                                                                                    | Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).                                                                                                                                         | Dominated by 1 velocity/depth regime (usually slow-deep).                                                                                                                                     |  |  |
| ıram                                         | SCORE 10                                      | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |
| $P_{\mathcal{E}}$                            | 4. Sediment<br>Deposition                     | Little or no enlargement<br>of islands or point bars<br>and less than 5% of the<br>bottom affected by<br>sediment deposition.                                                                                                                                                 | Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.                                                                                                                    | Moderate deposition of<br>new gravel, sand or fine<br>sediment on old and new<br>bars; 30-50% of the<br>bottom affected; sediment<br>deposits at obstructions,<br>constrictions, and bends;<br>moderate deposition of<br>pools prevalent. | Heavy deposits of fine<br>material, increased bar<br>development; more than<br>50% of the bottom<br>changing frequently;<br>pools almost absent due to<br>substantial sediment<br>deposition. |  |  |
|                                              | SCORE 10                                      | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |
|                                              | 5. Channel Flow<br>Status                     | Water reaches base of<br>both lower banks, and<br>minimal amount of<br>channel substrate is<br>exposed.                                                                                                                                                                       | Water fills >75% of the available channel; or <25% of channel substrate is exposed.                                                                                                                                                                         | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.                                                                                                                                                 | Very little water in<br>channel and mostly<br>present as standing pools.                                                                                                                      |  |  |
|                                              | SCORE 13                                      | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |

Notes:

#### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

|                                                        | Habitat                                                                                       |                                                                                                                                                                                                                                                                                      | Condition                                                                                                                                                                                                                                                                  | ı Category                                                                                                                                                                                                                           |                                                                                                                                                                                                   |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                        | Parameter                                                                                     | Optimal                                                                                                                                                                                                                                                                              | Suboptimal                                                                                                                                                                                                                                                                 | Marginal                                                                                                                                                                                                                             | Poor                                                                                                                                                                                              |  |  |
|                                                        | 6. Channel<br>Alteration                                                                      | Channelization or<br>dredging absent or<br>minimal; stream with<br>normal pattern.                                                                                                                                                                                                   | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.                                                                    | Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.                                                                                   | Banks shored with gabion<br>or cement; over 80% of<br>the stream reach<br>channelized and<br>disrupted. Instream<br>habitat greatly altered or<br>removed entirely.                               |  |  |
|                                                        | SCORE 19                                                                                      | 20 19 18 17 16                                                                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                                                             | 10 9 8 7 6                                                                                                                                                                                                                           | 5 4 3 2 1 0                                                                                                                                                                                       |  |  |
| ling reach                                             | 7. Frequency of<br>Riffles (or bends)                                                         | Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.     | Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.                                                                                                                                                          | Occasional riffle or bend;<br>bottom contours provide<br>some habitat; distance<br>between riffles divided by<br>the width of the stream is<br>between 15 to 25.                                                                     | Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.                                                         |  |  |
| amp                                                    | SCORE 17                                                                                      | 20 19 18 17 16                                                                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                                                             | 10 9 8 7 6                                                                                                                                                                                                                           | 5 4 3 2 1 0                                                                                                                                                                                       |  |  |
| Parameters to be evaluated broader than sampling reach | 8. Bank Stability (score each bank)  Note: determine left or right side by facing downstream. | Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.                                                                                                                                                     | Moderately stable;<br>infrequent, small areas of<br>erosion mostly healed<br>over. 5-30% of bank in<br>reach has areas of erosion.                                                                                                                                         | Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.                                                                                                                             | Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.                                                 |  |  |
| e ev                                                   | SCORE 3                                                                                       | Left Bank 10 9                                                                                                                                                                                                                                                                       | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |
| s to k                                                 | SCORE 7                                                                                       | Right Bank 10 9                                                                                                                                                                                                                                                                      | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |
| Parameter                                              | 9. Vegetative<br>Protection (score<br>each bank)                                              | More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally. | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining. | 50-70% of the<br>streambank surfaces<br>covered by vegetation;<br>disruption obvious;<br>patches of bare soil or<br>closely cropped vegetation<br>common; less than one-<br>half of the potential plant<br>stubble height remaining. | Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height. |  |  |
|                                                        | SCORE 4                                                                                       | Left Bank 10 9                                                                                                                                                                                                                                                                       | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |
|                                                        | SCORE 5                                                                                       | Right Bank 10 9                                                                                                                                                                                                                                                                      | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |
|                                                        | 10. Riparian Vegetative Zone Width (score each bank riparian zone)                            | Width of riparian zone<br>>18 meters; human<br>activities (i.e., parking<br>lots, roadbeds, clear-cuts,<br>lawns, or crops) have not<br>impacted zone.                                                                                                                               | Width of riparian zone<br>12-18 meters; human<br>activities have impacted<br>zone only minimally.                                                                                                                                                                          | Width of riparian zone 6-<br>12 meters; human<br>activities have impacted<br>zone a great deal.                                                                                                                                      | Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.                                                                                                       |  |  |
|                                                        | SCORE 8                                                                                       | Left Bank 10 9                                                                                                                                                                                                                                                                       | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |
| 1                                                      | SCORE 5                                                                                       | Right Bank 10 9                                                                                                                                                                                                                                                                      | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                                                | 2 1 0                                                                                                                                                                                             |  |  |


132 Notes:

A-8

#### BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

| 1                                                                                                                                                                         |                                                                |                                                                                      |                                                     |                            |                                                                                                                                      |                                                                          |                                                                                |                                  |                                           |                                                    |                                   |                                       |                                           |                                                                            |                                   |                             |                                |                            |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-----------------------------------|---------------------------------------|-------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|-----------------------------|--------------------------------|----------------------------|---------|
| STREAM NAME S-I                                                                                                                                                           | ·IJ10                                                          |                                                                                      |                                                     |                            |                                                                                                                                      | LOCA                                                                     | TION                                                                           | Roand                            | oke (                                     | Coun                                               | ty                                |                                       |                                           |                                                                            |                                   |                             |                                |                            |         |
| STATION #                                                                                                                                                                 | RIVERMILE                                                      |                                                                                      |                                                     |                            |                                                                                                                                      |                                                                          | STREAM CLASS Perennial                                                         |                                  |                                           |                                                    |                                   |                                       |                                           |                                                                            |                                   |                             |                                |                            |         |
| LAT 37.089179                                                                                                                                                             | _ L(                                                           | LONG80.005026                                                                        |                                                     |                            |                                                                                                                                      |                                                                          |                                                                                | RIVER BASIN Upper Roanoke        |                                           |                                                    |                                   |                                       |                                           |                                                                            |                                   |                             |                                |                            |         |
| STORET#                                                                                                                                                                   |                                                                |                                                                                      |                                                     |                            |                                                                                                                                      |                                                                          |                                                                                | AGENCY VADEQ                     |                                           |                                                    |                                   |                                       |                                           |                                                                            |                                   |                             |                                |                            |         |
| INVESTIGATORS K                                                                                                                                                           | (D, T(                                                         | 0                                                                                    |                                                     |                            |                                                                                                                                      |                                                                          | LOT NUMBER                                                                     |                                  |                                           |                                                    |                                   |                                       |                                           | NUMBER                                                                     |                                   |                             |                                |                            | _       |
| FORM COMPLETE                                                                                                                                                             | D BY                                                           | K                                                                                    | D                                                   |                            |                                                                                                                                      |                                                                          | DATE<br>TIME                                                                   |                                  |                                           |                                                    |                                   | F                                     | REAS                                      | SON FOR SURVEY<br>B                                                        | aselir                            | ne A                        | sse                            | ssm                        | ent     |
| HABITAT TYPES                                                                                                                                                             | ✓                                                              | Indicate the percentage of each habit  ✓ Cobble 50 % Snags%  Submerged Macrophytes % |                                                     |                            |                                                                                                                                      |                                                                          |                                                                                |                                  | Î₽ÎV                                      | eget                                               |                                   |                                       | ks_60_                                    | %                                                                          | %                                 |                             |                                |                            |         |
| SAMPLE                                                                                                                                                                    | G                                                              | ear                                                                                  | used                                                |                            | D-fr                                                                                                                                 | ame 🗸                                                                    | kick-n                                                                         | et                               |                                           | По                                                 | ther                              |                                       |                                           |                                                                            |                                   |                             |                                |                            | _       |
| COLLECTION                                                                                                                                                                |                                                                |                                                                                      |                                                     |                            |                                                                                                                                      |                                                                          |                                                                                |                                  |                                           |                                                    |                                   |                                       |                                           | _                                                                          |                                   |                             |                                |                            |         |
|                                                                                                                                                                           | H                                                              | ow v                                                                                 | vere                                                | the                        | samp                                                                                                                                 | les colle                                                                | cted?                                                                          | ✓                                | wading                                    | g                                                  | Ш                                 | fron                                  | n ban                                     | k ☐ from box                                                               | at                                |                             |                                |                            |         |
|                                                                                                                                                                           | ✓                                                              | Cob                                                                                  | ble 4                                               |                            |                                                                                                                                      | r of jabs<br>☐Sna<br>phytes_                                             | gs                                                                             | taken i<br>—                     | $\square V$                               | eget                                               | oitat<br>ated i<br>ther           | Banl                                  | ks                                        | Sand<br>)                                                                  |                                   |                             |                                |                            |         |
| GENERAL<br>COMMENTS                                                                                                                                                       | IL4 KICKS IN TIME NADIJAL CJAWIJSH AND JANIAH DANELS CAHONLAND |                                                                                      |                                                     |                            |                                                                                                                                      |                                                                          |                                                                                |                                  |                                           |                                                    |                                   |                                       |                                           |                                                                            |                                   |                             |                                |                            |         |
| QUALITATIVE                                                                                                                                                               |                                                                |                                                                                      |                                                     |                            |                                                                                                                                      |                                                                          |                                                                                |                                  |                                           |                                                    |                                   |                                       |                                           |                                                                            |                                   |                             |                                |                            |         |
| Indicate estimated Dominant  Periphyton                                                                                                                                   | d abı                                                          |                                                                                      |                                                     |                            | 0                                                                                                                                    | 1 2                                                                      | <b>Not O</b>                                                                   | Observ<br>4                      | ed, 1                                     | Sliı                                               | nes                               |                                       |                                           | ommon, 3= Abun                                                             | 0                                 | 1                           | 2                              | 3                          | -       |
| Indicate estimated Dominant                                                                                                                                               | d abı                                                          |                                                                                      |                                                     |                            | 0 = A                                                                                                                                | 1 2<br>1 2                                                               | 3<br>3                                                                         | Observ                           | ed, 1                                     | Sliı                                               | nes<br>croii                      |                                       | = C                                       | ·                                                                          | 0 0                               |                             |                                | 3 3 3                      | 4 4 4   |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERV Indicate estimate                                                                                                  | d abu                                                          | ONS                                                                                  | S Ol                                                | F Me:                      | 0<br>0<br>0<br>0<br>ACI<br>0 = 0                                                                                                     | 1 2 1 2 1 2 ROBEN Absent anisms)                                         | 3<br>3<br>3<br>NTHO<br>/Not (0, 3= A                                           | Dbserv  4 4 4 4 OS Observ        | ved, 1                                    | Slin<br>Ma<br>Fish<br>1 = 1                        | nes<br>croin<br>h<br>Rare         | e (1                                  | rtebr<br>-3 or                            | rganisms), 2 = Co<br>, 4 = Dominant (>                                     | 0<br>0<br>0                       | 1<br>1<br>1<br>1<br>1<br>(3 | 2<br>2<br>2<br>2               | 3<br>3                     | 4       |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERV Indicate estimates                                                                                                 | ATIO                                                           | ONS<br>und                                                                           | S Ol<br>anco                                        | F M 3                      | 0<br>0<br>0<br>0<br>ACI<br>0 = orga                                                                                                  | 1 2 1 2 1 2 ROBEN Absent Aniso                                           | 3 3 3 NTHO /Not (0, 3= A)                                                      | Dbserv  4 4 4 4 OS Observ        | ved, 1 ant (>                             | Slin<br>Ma<br>Fisi<br>1 = 1                        | mes croin                         | e (1)                                 | -3 or sms)                                | rganisms), 2 = Co , 4 = Dominant (>                                        | 0<br>0<br>0<br>0<br>mmoi<br>50 or | 1<br>1<br>1<br>1<br>1<br>(3 | 2<br>2<br>2<br>2<br>-9<br>nism | 3<br>3<br>3                | 4 4     |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERV Indicate estimates  Porifera Hydrozoa                                                                              | ATIO                                                           | ONS<br>und                                                                           | S Olance                                            | F M e: 3                   | 0<br>0<br>0<br>0<br>ACI<br>0 = orga                                                                                                  | 1 2 1 2 1 2 ROBEN Absent Aniso Zygop                                     | 3 3 3 NTHO (Not (), 3= A                                                       | Dbserv  4 4 4 4 OS Observ        | ved, 1 ant (>                             | Slin Ma Fisl  1 = 1 1 1                            | Rarrorgs                          | anis                                  | -3 or 4 4                                 | rganisms), 2 = Co , 4 = Dominant (>  Chironomidae Ephemeroptera            | 0<br>0<br>0<br>0<br>mmor<br>50 or | 1<br>1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>-9<br>nism | 3<br>3<br>3<br>3           | 4 4 4   |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERV Indicate estimate  Porifera Hydrozoa Platyhelminthes                                                               | ATIO                                                           | ONS 1 1 1 1                                                                          | S Olance                                            | FF M e: 3 3 3 3            | 0<br>0<br>0<br>0<br><b>ACI</b><br>0 = 0<br>orga                                                                                      | 1 2 1 2 1 2 ROBEN Absent Anisos Zygor Hemij                              | 3 3 3 NTHO /Not ( ), 3= A ptera ptera ptera                                    | Dbserv  4 4 4 4 OS Observ        | ved, 1 ant (>                             | Slin Ma Fisi  1 = 1 > 10                           | mes croin  Rare orga  2 2 2       | 3<br>3<br>3                           | -3 or 4 4 4 4                             | rganisms), 2 = Co, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br>mmoi<br>50 or | 1 1 1 m (3 rgan             | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERV Indicate estimate  Porifera Hydrozoa Platyhelminthes Turbellaria                                                   | ATIO d abu                                                     | ONS<br>und<br>1<br>1<br>1<br>1                                                       | S Olanco                                            | F M e: 3 3 3 3 3           | 0<br>0<br>0<br>0<br>ACI<br>0<br>0<br>orga                                                                                            | 1 2 1 2 1 2 ROBEN Absent Anisms)  Aniso Zygor Hemij Coleo                | 3 3 3 NTHO /Not () 0, 3= A ptera ptera ptera                                   | 4<br>4<br>4<br>4<br>Observ       | ved, 1 ant (> 0 0 0 0 0 0                 | Slin Ma Fis  1 = 1 1 1 1 1                         | mes croin h                       | 3<br>3<br>3<br>3                      | -3 or 4 4 4 4 4                           | rganisms), 2 = Co , 4 = Dominant (>  Chironomidae Ephemeroptera            | 0<br>0<br>0<br>0<br>mmor<br>50 or | 1<br>1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>-9<br>nism | 3<br>3<br>3<br>3           | 4 4 4   |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERV Indicate estimates  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea                                        | ATIO O O O O O O                                               | ONS<br>und<br>1<br>1<br>1<br>1<br>1                                                  | 2<br>2<br>2<br>2<br>2                               | F M e: 3 3 3 3 3 3         | 0<br>0<br>0<br>0<br>ACI<br>0 = orga<br>4<br>4<br>4<br>4<br>4<br>4                                                                    | 1 2 1 2 1 2 ROBEN Absent Anison Zygor Heming Coleo Lepid                 | 3 3 3 NTHO /Not (0, 3= A) ptera ptera ptera ptera ptera                        | 4<br>4<br>4<br>4<br>Observ       | o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Slin Ma Fisl  1 = 1 1 1 1 1 1                      | Rarcorg:                          | 3<br>3<br>3<br>3<br>3                 | -3 on 4 4 4 4 4 4                         | rganisms), 2 = Co, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br>mmoi<br>50 or | 1 1 1 m (3 rgan             | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERV Indicate estimates  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta                            | ATIO O O O O O O O                                             | ONS<br>und<br>1<br>1<br>1<br>1<br>1<br>1                                             | 2<br>2<br>2<br>2<br>2<br>2<br>2                     | 3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>ACI<br>0<br>0<br>e<br>orga                                                                                       | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2                                  | 3 3 3 NTHO /Not (0, 3= A) ptera ptera ptera ptera ptera ptera ae               | 4<br>4<br>4<br>4<br>OS<br>Observ | 0<br>0<br>0<br>0<br>0<br>0                | Slin Ma Fiss  1 = 1 1 1 1 1 1 1 1 1                | Rarrorga  2 2 2 2 2 2             | 3<br>3<br>3<br>3<br>3<br>3            | -3 or sms) 4 4 4 4 4                      | rganisms), 2 = Co, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br>mmoi<br>50 or | 1 1 1 m (3 rgan             | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERV Indicate estimate  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda                     | ATIO O O O O O O                                               | ONS<br>und<br>1<br>1<br>1<br>1<br>1                                                  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | F M e: 3 3 3 3 3 3         | 0<br>0<br>0<br>0<br>ACI<br>0 = orga<br>4<br>4<br>4<br>4<br>4<br>4                                                                    | 1 2 1 2 1 2 1 2 Absent/Absent Aniso Zygop Hemip Coleo Lepid Sialid Coryd | 3 3 3 NTHO /Not (0, 3= A) ptera ptera ptera ptera ptera ae lalidae             | 4<br>4<br>4<br>4<br>OS<br>Observ | o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Slin Ma Fisl  1 = 1 1 1 1 1 1                      | Rare orga                         | 3<br>3<br>3<br>3<br>3                 | -3 on 4 4 4 4 4 4                         | rganisms), 2 = Co, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br>mmoi<br>50 or | 1 1 1 m (3 rgan             | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERV Indicate estimate  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda           | 0<br>0<br>0<br>0<br>0<br>0                                     | ONS<br>und<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                        | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2           | 3 3 3 3 3 3 3              | 0<br>0<br>0<br>0<br><b>ACII</b><br><b>a</b><br>0<br><b>o</b><br>0<br><b>o</b><br>0<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2                                  | 3 3 3 NTHO /Not () 0, 3= A ptera ptera ptera ptera ae lalidae idae             | 4<br>4<br>4<br>4<br>OS<br>Observ | 0<br>0<br>0<br>0<br>0<br>0                | Slin Ma Fis  1 = : >10  1                          | mes croin h                       | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | -3 or sms) 4 4 4 4 4 4 4                  | rganisms), 2 = Co, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br>mmoi<br>50 or | 1 1 1 m (3 rgan             | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERV Indicate estimates  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda Decapoda | 0<br>0<br>0<br>0<br>0<br>0                                     | ONS<br>und<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                        | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | 3 3 3 3 3 3 3 3            | 0<br>0<br>0<br>0<br><b>ACI</b><br>0 = 0<br>orga                                                                                      | 1 2 1 2 1 2 1 2 Absent/Absent Aniso Zygop Hemip Coleo Lepid Sialid Coryd | 3 3 3 NTHO /Not (0, 3= A) ptera ptera ptera ptera ae lalidae dae didae         | 4<br>4<br>4<br>4<br>OS<br>Observ | 0<br>0<br>0<br>0<br>0<br>0                | Slin Ma Fis  1 = : >10  1                          | Rare orga                         | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | -3 on 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | rganisms), 2 = Co, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br>mmoi<br>50 or | 1 1 1 m (3 rgan             | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERV Indicate estimate  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda           | ATIO O O O O O O O O O O O O O O O O O O                       | ONS<br>und<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 3 3 3 3 3 3 3 3 3          | 0<br>0<br>0<br>0<br>0<br><b>ACI</b><br>0 = <b>org</b><br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                    | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2                                  | 3 3 3 NTHO /Not (0, 3= A) ptera ptera ptera ptera ae lalidae didae didae iidae | 4<br>4<br>4<br>4<br>OS<br>Observ | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Slin Ma Fis  1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Rarrorgs  2 2 2 2 2 2 2 2 2 2 2 2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | -3 or 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | rganisms), 2 = Co, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br>mmoi<br>50 or | 1 1 1 m (3 rgan             | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |

# Mountain Valley Pipeline Data are not adjusted for subsampling



|                                              | Sample ID<br>Collection Date                  | S-IJ10<br>08-27-2021 |
|----------------------------------------------|-----------------------------------------------|----------------------|
| ORDER                                        | GENUS/SPECIES                                 | COUNT                |
| Ephemeroptera                                | ·                                             | 1                    |
| Ephemeroptera                                |                                               | 18                   |
| Ephemeroptera<br>Ephemeroptera               |                                               | 6 2                  |
| Ephemeroptera Ephemeroptera                  |                                               | 1                    |
|                                              | Eurylophella sp.                              | 1                    |
| Ephemeroptera                                |                                               | 1                    |
| Ephemeroptera                                | Leptophlebiidae                               | 1                    |
| Ephemeroptera                                | Maccaffertium sp.                             | 12                   |
| Ephemeroptera                                |                                               | 1                    |
| Ephemeroptera                                |                                               | 1                    |
|                                              | Teloganopsis deficiens<br>Eccoptura xanthenes | 3                    |
| Plecoptera                                   |                                               | 2                    |
|                                              | Neoperla sp.                                  | 6                    |
| Plecoptera                                   |                                               | 1                    |
| •                                            | Cheumatopsyche sp.                            | 14                   |
|                                              | Chimarra sp.                                  | 1                    |
|                                              | Hydropsyche sp.                               | 4                    |
|                                              | Calopterygidae                                | 2                    |
|                                              | Gomphidae                                     | 1                    |
|                                              | Ophiogomphus sp.                              | 1                    |
| ·                                            | Anchytarsus bicolor                           | 1                    |
| -                                            | Helichus sp.                                  | 1                    |
| ·                                            | Optioservus sp.                               | 47<br>15             |
| ·                                            | Oulimnius sp. Psephenus sp.                   |                      |
| -                                            | Stenelmis sp.                                 | 3                    |
|                                              | Corydalus sp.                                 | 1                    |
| Diptera-Chironomidae                         | -                                             | 7                    |
| Diptera-Chironomidae                         |                                               | 2                    |
| Diptera-Chironomidae                         |                                               | 4                    |
| Diptera-Chironomidae                         | T                                             | 8                    |
| Diptera-Chironomidae                         |                                               | 1                    |
| Diptera-Chironomidae                         | ·                                             | 2                    |
| Diptera-Chironomidae                         | •                                             | 2                    |
| Diptera-Chironomidae                         | •                                             | 1                    |
| · ·                                          | ' '                                           | 12                   |
| Diptera-Chironomidae                         | 7.7                                           | 12                   |
| Diptera-Chironomidae<br>Diptera-Chironomidae | ·                                             | 4                    |
| Diptera-Chironomidae                         |                                               | 2                    |
|                                              | Thienemannimyia gr. sp.                       | 4                    |
| Diptera-Chironomidae                         |                                               | 1                    |
| •                                            | Antocha sp.                                   | 1                    |
|                                              | Atylotus/Tabanus sp.                          | 2                    |
|                                              | Ceratopogoninae<br>Hemerodromia sp.           | 3<br>6               |
|                                              | Hernerodromia sp. Hexatoma sp.                | 4                    |
|                                              | Simuliidae                                    | 3                    |
|                                              | Lumbricina                                    | 3                    |
|                                              | tubificoid Naididae w/o cap setae             | 1                    |
|                                              | Hydryphantidae                                | 1                    |
|                                              | Lebertia sp.                                  | 4                    |
| Other Organisms<br>Other Organisms           |                                               | 2 2                  |
| Other Organisms                              | TOTAL                                         | 235                  |

Mountain Valley Pipeline WV SCI Metrics



| Sample ID<br>Collection Date                                                  |                                               |
|-------------------------------------------------------------------------------|-----------------------------------------------|
| WVSCI Metric Values Total taxa EPT taxa EPT Chironomidae 2 Dominant HBI       | 30<br>11<br>33.6<br>21.7<br>48.5<br>4.60      |
| WVSCI Metric Scores Total taxa EPT taxa % EPT Chironomidae 2 Dominant HBI     | 142.9<br>84.6<br>36.6<br>79.1<br>80.5<br>76.1 |
| WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI | 100.0<br>84.6<br>36.6<br>79.1<br>80.5<br>76.1 |
| WVSCI Total Score                                                             | 76.1                                          |

#### WVSCI Thresholds

Unimpaired = > 68.00 Gray Zone = 60.61 to 68.00 Impaired = <60.61

#### WOLMAN PEBBLE COUNT FORM

County: Franklin County Stream ID: S-IJ10

Stream Name: Little Creek

HUC Code: 03010101 Basin: Upper Roanoke

Survey Date: 8/27/2021 Surveyors: KD TC Type: Representative

| r 1         | D . D.TIGI E |             | LE COUNT |                   |         | T =    | 0.0   |
|-------------|--------------|-------------|----------|-------------------|---------|--------|-------|
| Inches      | PARTICLE     | Millimeters |          | Particle<br>Count | Total # | Item % | % Cui |
|             | Silt/Clay    | < .062      | S/C      | <b>-</b>          | 12      | 12.00  | 12.00 |
|             | Very Fine    | .062125     |          | •                 | 0       | 0.00   | 12.00 |
|             | Fine         | .12525      | 1        | •                 | 2       | 2.00   | 14.00 |
|             | Medium       | .255        | SAND     | •                 | 2       | 2.00   | 16.00 |
|             | Coarse       | .50-1.0     | 1        | •                 | 7       | 7.00   | 23.00 |
| .0408       | Very Coarse  | 1.0-2       | 1        | •                 | 0       | 0.00   | 23.00 |
| .0816       | Very Fine    | 2 -4        |          | •                 | 2       | 2.00   | 25.00 |
| .1622       | Fine         | 4 -5.7      | 1        | •                 | 0       | 0.00   | 25.00 |
| .2231       | Fine         | 5.7 - 8     | 1        | <b>^</b>          | 4       | 4.00   | 29.00 |
| .3144       | Medium       | 8 -11.3     | 1        | •                 | 9       | 9.00   | 38.00 |
| .4463       | Medium       | 11.3 - 16   | GRAVEL   | •                 | 2       | 2.00   | 40.00 |
| .6389       | Coarse       | 16 -22.6    | 1        | <b>4</b>          | 6       | 6.00   | 46.00 |
| .89 - 1.26  | Coarse       | 22.6 - 32   | 1        | <b>4</b>          | 9       | 9.00   | 55.00 |
| 1.26 - 1.77 | Vry Coarse   | 32 - 45     | 1        | <b>4</b>          | 13      | 13.00  | 68.00 |
| 1.77 -2.5   | Vry Coarse   | 45 - 64     | 1        | <b>4</b>          | 17      | 17.00  | 85.00 |
| 2.5 - 3.5   | Small        | 64 - 90     |          | <b>4</b>          | 9       | 9.00   | 94.00 |
| 3.5 - 5.0   | Small        | 90 - 128    | 1        | <b>4</b>          | 4       | 4.00   | 98.00 |
| 5.0 - 7.1   | Large        | 128 - 180   | COBBLE   | <b>4</b>          | 2       | 2.00   | 100.0 |
| 7.1 - 10.1  | Large        | 180 - 256   | 1        | <b>4</b>          | 0       | 0.00   | 100.0 |
| 10.1 - 14.3 | Small        | 256 - 362   |          | <b>^</b>          | 0       | 0.00   | 100.0 |
| 14.3 - 20   | Small        | 362 - 512   | 1        | <b>A</b>          | 0       | 0.00   | 100.0 |
| 20 - 40     | Medium       | 512 - 1024  | BOULDER  | <b>A</b>          | 0       | 0.00   | 100.0 |
| 40 - 80     | Large        | 1024 -2048  | 1        | <b>A</b>          | 0       | 0.00   | 100.0 |
| 80 - 160    | Vry Large    | 2048 -4096  | 1        | <b>A</b>          | 0       | 0.00   | 100.0 |
|             | Bedrock      |             | BDRK     | <b>^</b>          | 0       | 0.00   | 100.0 |
|             |              |             | 1        | Totals            | 100     |        |       |

#### RIVERMORPH PARTICLE SUMMARY

River Name: Little Creek
Reach Name: S-IJ10
Sample Name: Representative
Survey Date: 08/27/2021

| Size (mm)                                                                                                                                                                                                                                                                                                                       | TOT #                                                                                                         | ITEM %                                                                                                                                                                          | CUM %                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - 0.062<br>0.062 - 0.125<br>0.125 - 0.25<br>0.25 - 0.50<br>0.50 - 1.0<br>1.0 - 2.0<br>2.0 - 4.0<br>4.0 - 5.7<br>5.7 - 8.0<br>8.0 - 11.3<br>11.3 - 16.0<br>16.0 - 22.6<br>22.6 - 32.0<br>32 - 45<br>45 - 64<br>64 - 90<br>90 - 128<br>128 - 180<br>180 - 256<br>256 - 362<br>362 - 512<br>512 - 1024<br>1024 - 2048<br>Bedrock | 12<br>0<br>2<br>2<br>7<br>0<br>2<br>0<br>4<br>9<br>2<br>6<br>9<br>13<br>17<br>9<br>4<br>2<br>0<br>0<br>0<br>0 | 12.00<br>0.00<br>2.00<br>2.00<br>7.00<br>0.00<br>2.00<br>0.00<br>4.00<br>9.00<br>6.00<br>9.00<br>13.00<br>17.00<br>9.00<br>4.00<br>2.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 12.00<br>14.00<br>14.00<br>16.00<br>23.00<br>23.00<br>25.00<br>25.00<br>29.00<br>38.00<br>40.00<br>46.00<br>55.00<br>68.00<br>85.00<br>94.00<br>98.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00 |
| D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)                                                                                                                                                                                                     | 0.5<br>10.2<br>26.78<br>62.88<br>99.5<br>180<br>12<br>11<br>62<br>15<br>0                                     |                                                                                                                                                                                 |                                                                                                                                                                                                         |

Total Particles = 100.

| Project # Project Name (Applicant)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     | tream Method                                                                                                                                                                    | ology for use                                                                                                                                                                                                                                          | in Virginia                                                                                                                                                                                                                                                                      | orm 1                                                                                                                                                           | l)<br>                                                                                                                                                                                                                                        |                                                                                                               |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------|
| Project Walle (Applicant)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Locality                                                                                                                                                                                                            | Cowardin Class.                                                                                                                                                                 | HUC                                                                                                                                                                                                                                                    | Date                                                                                                                                                                                                                                                                             | SAR#                                                                                                                                                            | Impact<br>Length                                                                                                                                                                                                                              | Impact<br>Factor                                                                                              |            |
| 22865.06 Mountain Valley Pipeline (Mountain Valley Pipeline, LLC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | County                                                                                                                                                                                                              | R3                                                                                                                                                                              | 03010101                                                                                                                                                                                                                                               | 8/27/21                                                                                                                                                                                                                                                                          | S-IJ10                                                                                                                                                          | 20                                                                                                                                                                                                                                            | 1                                                                                                             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Name and Informa                                                                                                                                                                                                  | tion                                                                                                                                                                            |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                 | SAR Length                                                                                                                                                                                                                                    |                                                                                                               |            |
| TC, KD Little (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Creek                                                                                                                                                                                                               |                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                 | 83                                                                                                                                                                                                                                            |                                                                                                               |            |
| 1. Channel Condition: Assess the cross-section of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                     | dition (erosion, agg<br>Conditional Categor                                                                                                                                     |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                 |                                                                                                                                                                                                                                               |                                                                                                               |            |
| Optimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Suboptimal                                                                                                                                                                                                          | Marg                                                                                                                                                                            | -                                                                                                                                                                                                                                                      | Po                                                                                                                                                                                                                                                                               | or                                                                                                                                                              | Sev                                                                                                                                                                                                                                           | ere                                                                                                           |            |
| Channel Condition  100% stable banks. Vegetative surface protection or natural rock, prominent (80-100%). AND/OR Stable point bars / bankfull benches are present. Access to their original floodplain or fully  100% stable banks. Vegetative surface erosion of be dependent of bars of being the protection of being the provided bars. Vegetative surface of being the provided bars. Vegetative surface erosion of ba | incised, few areas of active r unprotected banks. Majority miks are stable (60-80%), we protection or natural rock ninent (60-80%) AND/OR tional features contribute to                                             |                                                                                                                                                                                 | stable than Severe<br>wer bank slopes.<br>sent on 40-60% of<br>ative protection on<br>reambanks may be                                                                                                                                                 | vertical. Erosion pro<br>banks. Vegetative<br>on 20-40% of banks                                                                                                                                                                                                                 | <ul> <li>Likely to widen<br/>both banks are near<br/>esent on 60-80% of<br/>protection present<br/>s, and is insufficient</li> </ul>                            | Streambed below ave<br>majority of banks<br>Vegetative protection                                                                                                                                                                             | stability. Severe<br>ed within the banks.<br>erage rooting depth,<br>vertical/undercut.<br>on present on less |            |
| channel bars and transverse bars few. Transient sediment deposition covers less than 10% of bottom.  channels has ac newly c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The bankfull and low flow are well defined. Stream likely cess to bankfull benches, or leveloped floodplains along ns of the reach. Transient covers 10-40% of the stream bottom.                                   | v vertical or undercut. AND/OR 40-60% Sediment may be temporary / transient, contribute instability, Deposition that contribute to stability, may be forming/present. AND/OR V- |                                                                                                                                                                                                                                                        | to prevent erosion. AND/OR 60-80% of<br>the stream is covered by sediment.<br>Sediment is temporary / transient in<br>nature, and contributing to instability.<br>AND/OR V-shaped channels have<br>vegetative protection is present on ><br>40% of the banks and stable sediment |                                                                                                                                                                 | of than 20% of banks, is not preventing<br>erosion. Obvious bank sloughing<br>present. Erosion/raw banks on 80-100%.<br>AND/OR Aggrading channel. Greater<br>than 80% of stream bed is covered by<br>deposition, contributing to instability. |                                                                                                               | CI         |
| Scores 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4                                                                                                                                                                                                                 | 2                                                                                                                                                                               | !                                                                                                                                                                                                                                                      | 1.                                                                                                                                                                                                                                                                               | .6                                                                                                                                                              | 1                                                                                                                                                                                                                                             |                                                                                                               | 2.00       |
| 2. RIPARIAN BUFFERS: Assess both bank's 100 foot  Optimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | riparian areas along the e  Conditional Cate Suboptimal                                                                                                                                                             |                                                                                                                                                                                 |                                                                                                                                                                                                                                                        | length & width ma                                                                                                                                                                                                                                                                |                                                                                                                                                                 | NOTES>>                                                                                                                                                                                                                                       |                                                                                                               |            |
| Riparian Buffers  Tree stratum (dbh > 3 inches) present, with > 60% tree canopy cover. Wetlands located within the riparian areas.  High Sut Riparian tree stratum (dbh > 3 inches) present, with 30% tree can do conta herbace shrub la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | poptimal: Low Suboptimal: areas with Riparian areas with Im (dbh > tree stratum (dbh > present, so to 60% with 30% to 60% with 30% to 60% with 30% to 60% us and a maintained upersor a cutover (dense vegetation). | High Marginal:<br>Non-maintained,<br>dense herbaceous<br>vegetation with<br>either a shrub layer<br>or a tree layer (dbh                                                        | Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. | High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.                                                                      | Low Poor:<br>Impervious<br>surfaces, mine<br>spoil lands,<br>denuded surfaces,<br>row crops, active<br>feed lots, trails, or<br>other comparable<br>conditions. |                                                                                                                                                                                                                                               |                                                                                                               |            |
| Hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gh Low                                                                                                                                                                                                              | High                                                                                                                                                                            | Low                                                                                                                                                                                                                                                    | High                                                                                                                                                                                                                                                                             | Low                                                                                                                                                             | ]                                                                                                                                                                                                                                             |                                                                                                               |            |
| Scores 1.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .2 1.1                                                                                                                                                                                                              | 0.85                                                                                                                                                                            | 0.75                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                             |                                                                                                                                                                                                                                               |                                                                                                               |            |
| Delineate riparian areas along each stream bank into Cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nate riparian areas along each stream bank into Condition Categories and Condition S mine square footage for each by measuring or estimating length and width. Calculato                                            |                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                  | Ensure the sums of % Riparian Blocks equal 100                                                                                                                  |                                                                                                                                                                                                                                               |                                                                                                               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                   | culators are provide                                                                                                                                                            | ed for you below.                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                  | •                                                                                                                                                               |                                                                                                                                                                                                                                               |                                                                                                               |            |
| Determine square footage for each by measuring or estima     Enter the % Riparian Area and Score for each riparian cate     % Riparian Area     70%     65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                   | culators are provide                                                                                                                                                            | ed for you below.                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                  | •                                                                                                                                                               |                                                                                                                                                                                                                                               |                                                                                                               |            |
| Determine square footage for each by measuring or estima     Enter the % Riparian Area and Score for each riparian cate  Right Bank      Riparian Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gory in the blocks below.                                                                                                                                                                                           | culators are provide                                                                                                                                                            | ed for you below.                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                  | qual 100                                                                                                                                                        |                                                                                                                                                                                                                                               | 20.04/6                                                                                                       |            |
| 2. Determine square footage for each by measuring or estima 3. Enter the % Riparian Area and Score for each riparian cate  Right Bank    % Riparian Area > 20% 65   Score > 0.5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gory in the blocks below. 9% 15% 6 1.5                                                                                                                                                                              | culators are provide                                                                                                                                                            | ed for you below.                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                  | qual 100<br>100%                                                                                                                                                | CI= (Sum % RA * Soc<br>Rt Bank CI >                                                                                                                                                                                                           |                                                                                                               | CI         |
| 2. Determine square footage for each by measuring or estima 3. Enter the % Riparian Area and Score for each riparian cate  Right Bank    % Riparian Area   20%   65     Score > 0.5   0     Left Bank   % Riparian Area   20%   80     W Riparian Area   20%   80     Control of the square of the squar | gory in the blocks below.                                                                                                                                                                                           | suators are provide                                                                                                                                                             | ed for you below.                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                  | qual 100                                                                                                                                                        | CI= (Sum % RA * Sco<br>Rt Bank CI ><br>Lt Bank CI >                                                                                                                                                                                           | ores*0.01)/2<br>0.72<br>0.58                                                                                  | CI<br>0.65 |
| 2. Determine square footage for each by measuring or estima           3. Enter the % Riparian Area and Score for each riparian cate           Right Bank              % Riparian Area > 20% 65            Score > 0.5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gory in the blocks below. 15% 15% 15% 1.5 1% 16 1.5 19% 16 1.6 1.7 19% 16 17.5 19% 18.6 19% 19% 19% 19% 19% 19% 19% 19% 19% 19%                                                                                     | and leafy debris;                                                                                                                                                               | ,                                                                                                                                                                                                                                                      | Blocks e                                                                                                                                                                                                                                                                         | 100%                                                                                                                                                            | Rt Bank CI > Lt Bank CI > banks; root mats; S                                                                                                                                                                                                 | 0.72<br>0.58                                                                                                  |            |
| 2. Determine square footage for each by measuring or estima 3. Enter the % Riparian Area and Score for each riparian cate  Right Bank    % Riparian Area   20%   65     Score > 0.5   0     Left Bank   % Riparian Area   20%   80     Score > 0.5   0   3. INSTREAM HABITAT: Varied substrate sizes, water complexes, stable features.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gory in the blocks below. 15% 15% 16 1.5 1% 16 200 10% 15% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10                                                                                                                   | al Category                                                                                                                                                                     | stable substrate; l                                                                                                                                                                                                                                    | Blocks e                                                                                                                                                                                                                                                                         | 100% 100% 100%                                                                                                                                                  | Rt Bank CI >                                                                                                                                                                                                                                  | 0.72<br>0.58                                                                                                  |            |
| 2. Determine square footage for each by measuring or estima 3. Enter the % Riparian Area and Score for each riparian cate  Right Bank    % Riparian Area > 20%   65     Score > 0.5   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gory in the blocks below. 15% 15% 15% 1.5 1% 16 1.5 19% 16 1.6                                                                                                                                                      | y and leafy debris; all Category Marc                                                                                                                                           | stable substrate; I                                                                                                                                                                                                                                    | Blocks e                                                                                                                                                                                                                                                                         | qual 100  100%  100%  100%  shade; undercut  oor  listed above are stable. Habitat ally present in less                                                         | Rt Bank CI > Lt Bank CI > banks; root mats; S                                                                                                                                                                                                 | 0.72<br>0.58<br>AV; riffle/pool                                                                               |            |

| Stream Impact Assessment Form Page 2                                                                                                                                                 |                                                |                                      |                                                                        |                          |                                                                                     |                                                                                      |                                                                                  |         |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------|---|
| Project # Project Name (Applicant) Locality Cowardin Class. HUC Date SAR # Impact Length Factor                                                                                      |                                                |                                      |                                                                        |                          |                                                                                     |                                                                                      |                                                                                  |         |   |
| 22865.06                                                                                                                                                                             | Mountain Valley Pipeline<br>Valley Pipeline, L | •                                    | Franklin<br>County                                                     | R3                       | 03010101                                                                            | 8/27/21                                                                              | S-IJ10                                                                           | 20      | 1 |
| 4. CHANNEL ALTERATION: Stream crossings, riprap, concrete, gabions, or concrete blocks, straightening of channel, channelization, embankments, spoil piles, constrictions, livestock |                                                |                                      |                                                                        |                          |                                                                                     |                                                                                      |                                                                                  |         |   |
|                                                                                                                                                                                      | Conditional Category                           |                                      |                                                                        |                          |                                                                                     |                                                                                      |                                                                                  |         |   |
|                                                                                                                                                                                      |                                                |                                      | Conditiona                                                             | al Category              |                                                                                     |                                                                                      |                                                                                  | NOTES>> |   |
|                                                                                                                                                                                      | Negligible                                     | Mi                                   | Conditiona<br>nor                                                      | Mod                      | erate                                                                               | Sev                                                                                  | rere                                                                             | NOTES>> |   |
| Channel<br>Alteration                                                                                                                                                                |                                                | Less than 20% of the stream reach is | 20-40% of the<br>stream reach is<br>disrupted by any of<br>the channel | Mod<br>40 - 60% of reach | 60 - 80% of reach<br>is disrupted by any<br>of the channel<br>alterations listed in | Greater than 80% c by any of the chanr in the parameter g 80% of banks sh riprap, or | of reach is disrupted neel alterations listed uidelines AND/OR ored with gabion, | NOTES>> |   |

NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

THE REACH CONDITION INDEX (RCI) >> 1.07

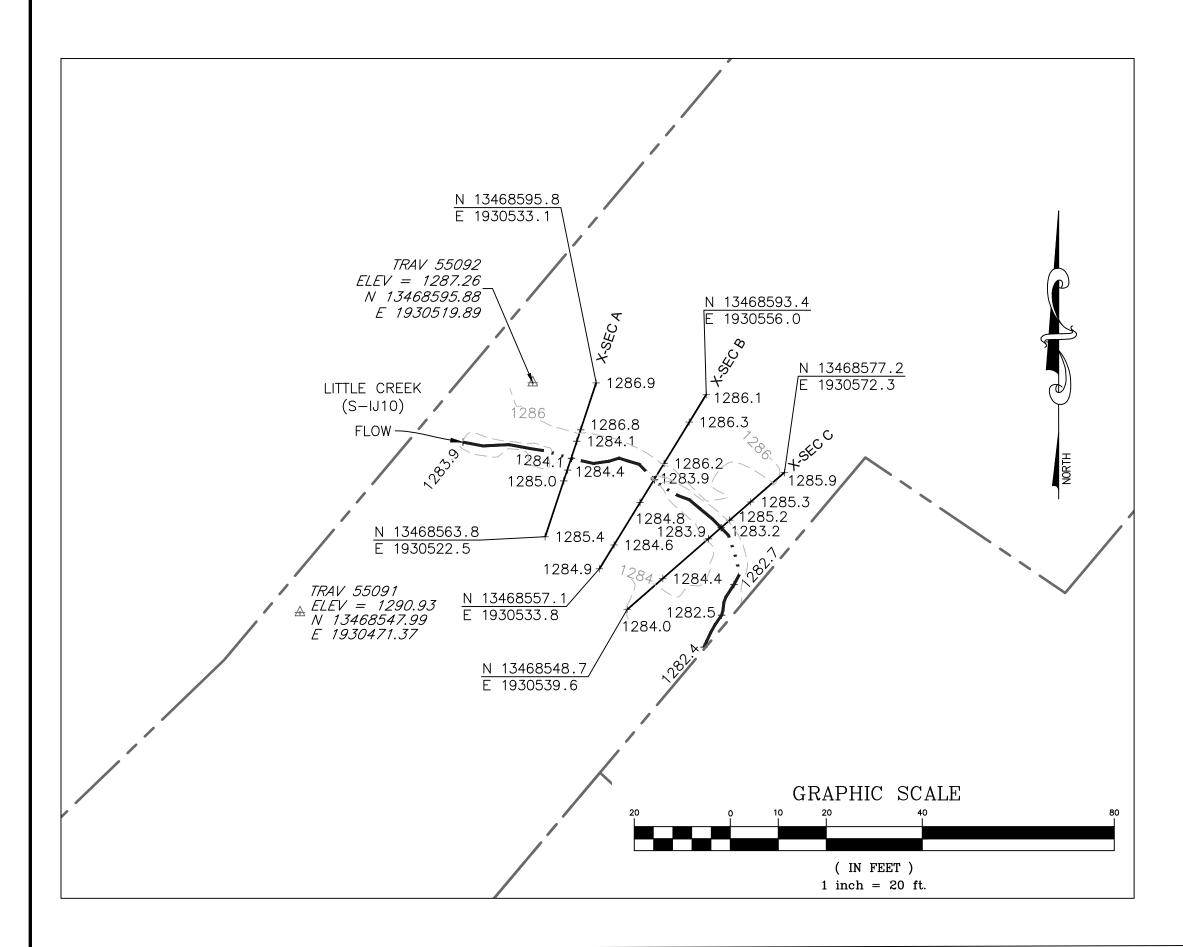
RCI= (Sum of all Cl's)/5, except if stream is ephemeral RCI = (Riparian Cl/2)

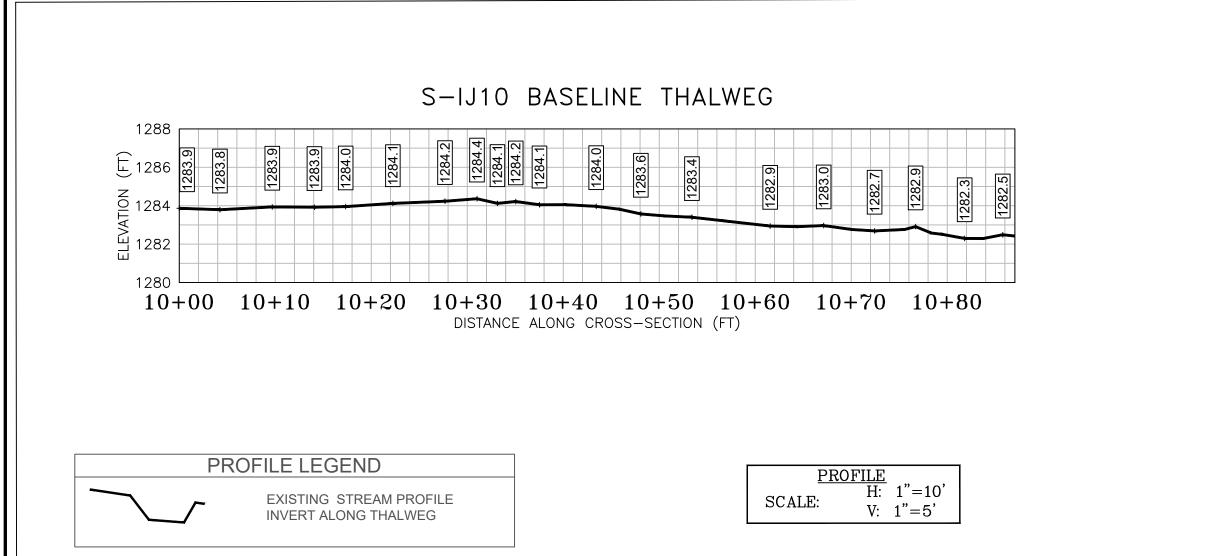
COMPENSATION REQUIREMENT (CR) >> 21

CR = RCI X L<sub>I</sub> X IF

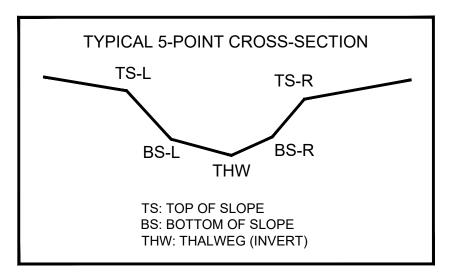
#### INSERT PHOTOS:

(WSSI Photo Location L:\22000s\22800\22865.06\Admin\05-ENVR\Field Data\Spread I\Field Forms\S-IJ10\Photos\DS VIEW.JPG)


REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH

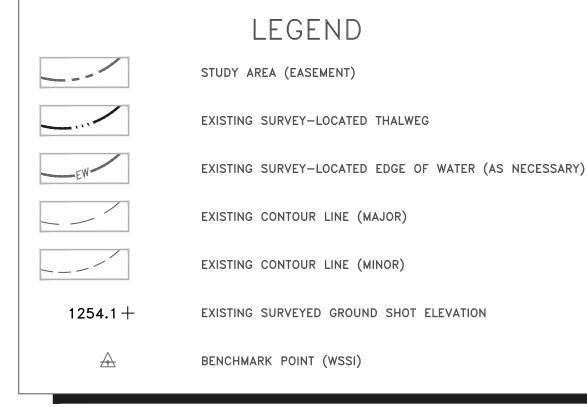


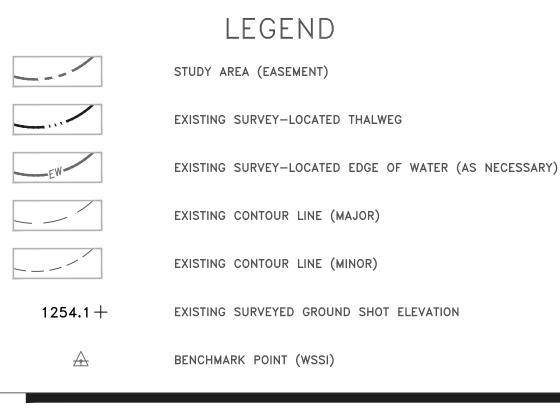

Downstream view facing E within the ROW. Assessment is limited to areas within the temporary ROW.


| DESCRIBE PROPOSED IMPACT | Γ: |  |
|--------------------------|----|--|
|--------------------------|----|--|

PROVIDED UNDER SEPARATE COVER



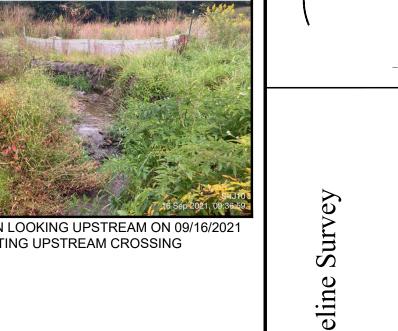




| CL STAKEOUT POINTS: S-IJ10 CROSS SECTION B (PIPE CL) |               |            |         |       |       |
|------------------------------------------------------|---------------|------------|---------|-------|-------|
|                                                      | POST-CROSSING |            |         |       |       |
| PT. LOC.                                             | NORTHING      | EASTING    | ELEV    | VERT. | HORZ. |
| P1. LOC.                                             | NORTHING      | EASTING    | ELEV    | DIFF. | DIFF. |
| TS-L                                                 | 13468579.06   | 1930547.25 | 1286.19 |       |       |
| BS-L                                                 | 13468576.61   | 1930545.77 | 1283.91 |       |       |
| THW                                                  | 13468575.66   | 1930545.22 | 1283.95 |       |       |
| BS-R                                                 | 13468573.74   | 1930544.01 | 1284.38 |       |       |
| TS-R                                                 | 13468570.94   | 1930542.23 | 1284.76 |       |       |



## SURVEY NOTES:

- 1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on September 10, 2018 and September 16, 2021.
- 2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.
- 3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).
- 4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.
- 5. All section views shown are left to right facing downstream.
- 6. Cross-section B shot at location of pipe centerline (based on best professional judgement).
- 7. Pipe installed prior to survey.










EXISTING UPSTREAM CROSSING



| POST-CROSSING PHOTOS |
|----------------------|

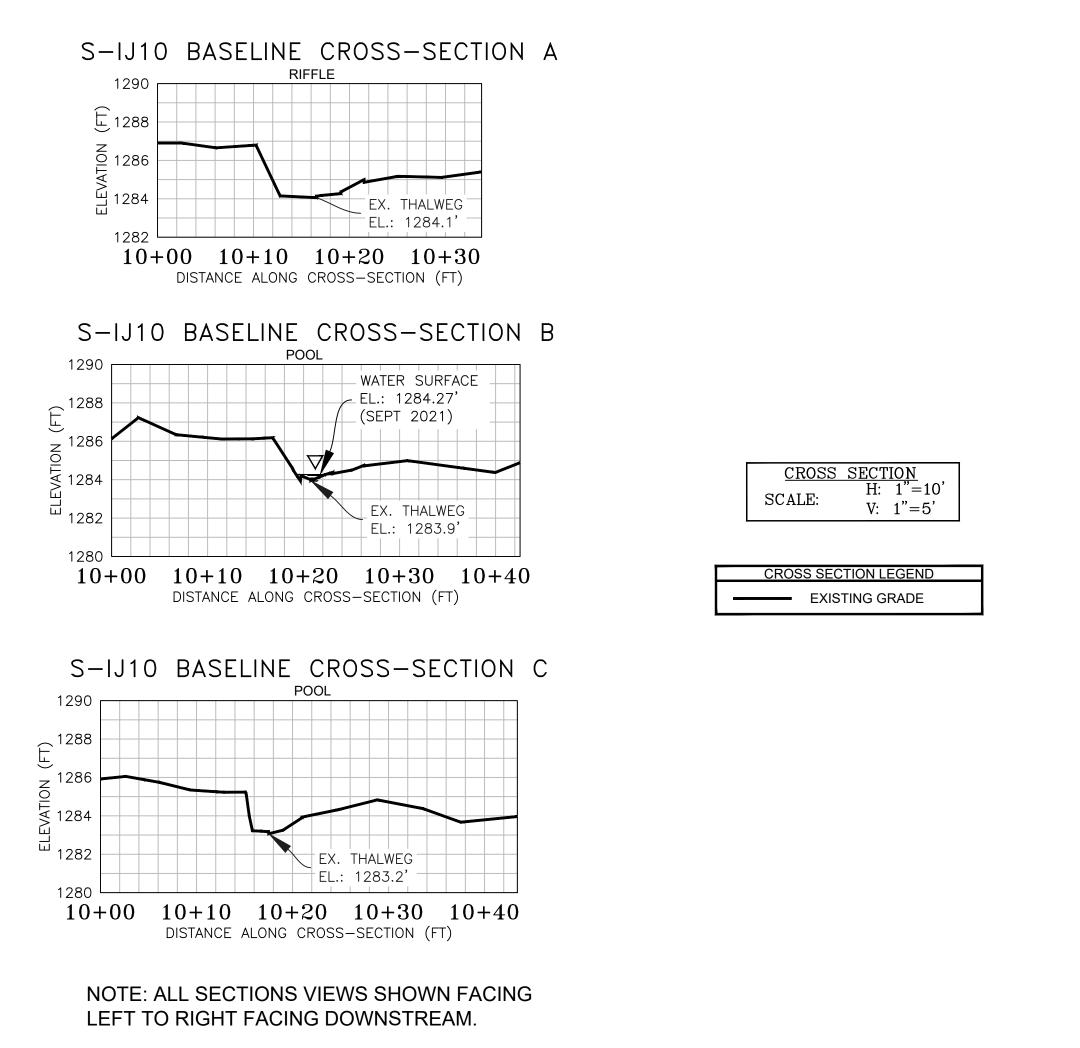
| PENDING CROSSING |
|------------------|

PHOTO TAKEN LOOKING

| PENDING CROSSING |  |
|------------------|--|

PHOTO TAKEN LOOKING

| PENDING CROSSING |
|------------------|
|                  |


PHOTO TAKEN LOOKING

WSSI 2' C.I. Topo SIH PFS EJC Sheet # 1 of 1 Computer File Name: L:\Survey\22000s\22800\22865.03\Spread I Work Dwgs 2865\_03 S-I MP 254-267 Sheets.dwg

Horizontal Datum: NAD 1983 UTM ZONE 1

Vertical Datum: NAVD 88

Boundary and Topo Source:

