Baseline Assessment – Stream Attributes

Reach S-IJ35-EPH (Pipeline ROW) Ephemeral Spread I Pittsylvania County, Virginia

Data	Included				
Photos	✓				
SWVM Form	✓				
FCI Calculator and HGM Form	✓				
RBP Physical Characteristics Form	✓				
Water Quality Data	N/A – No flow				
RBP Habitat Form	✓				
RBP Benthic Form	✓				
Benthic Identification Sheet	N/A – lack of habitat				
Wolman Pebble Count	✓				
RiverMorph Data Sheet	✓				
USM Form (Virginia Only)	✓				
Longitudinal Profile and Cross Sections	✓				

Photo Type: DS VIEW

Location, Orientation, Photographer Initials: Downstream view of ROW looking NE, DW/JM

Location, Orientation, Photographer Initials: Upstream view of ROW looking SW, DW/JM

Spread I Stream S-IJ35-EPH (Pipeline ROW) Pittsylvania County

Photo Type: LB CL Location, Orientation, Photographer Initials: Standing on LB looking at RB looking N, DW/JM

Photo Type: RB CL Location, Orientation, Photographer Initials: Standing on RB looking at LB looking N, DW/JM

Photo Type: DS COND

Location, Orientation, Photographer Initials: Downstream conditions outside of ROW looking NE, DW/JM

(v2.1, Sept 2015)		WC	untam valley Pipelin	e		cimal Degrees)	Lat.	36.691451	Lon.	-78.433761		WEATHER.		Sullily		DATE.	August 1	9, 2021
IMPACT STREAM/SITE ID (watershed size (acreage),				S-IJ35-EPI	H / 10.87 ac			MITIGATION STREAM CLASS. (watershed size {acreage			N:					Comments:		
STREAM IMPACT LENGTH:	171	FORM O		DRATION (Levels I-III)		OORDINATES: cimal Degrees)	Lat.		Lon.			PRECIPITATION PAST 48 HRS:		No		Mitigation Length:		
Column No. 1- Impact Existing	g Condition (Del	bit)	Colum	n No. 2- Mitigation Existing Co	ondition - Base	line (Credit)		Column No. 3- Mitigation Pr Post Completio		Years		Column No. 4- Mitigation Proje Post Completion (ears		Column No. 5- Mitigation Project	ed at Maturity (Cr	redit)
Stream Classification:	Ephe	meral	Stream Class	ification:				Stream Classification:		0	Str	ream Classification:		0	Strea	am Classification:	0	
Percent Stream Channel SI		5.84	Р	ercent Stream Channel Sic	•			Percent Stream Channel S		0		Percent Stream Channel Sl		0		Percent Stream Channel S		0
HGM Score (attach d	ata forms):			HGM Score (attach o	data forms):			HGM Score (attach	data forms):			HGM Score (attach data forms):			HGM Score (attach d	ata forms):		
	0.00	Average				Average				Average	ļ.,			Average				Average
Hydrology Biogeochemical Cycling Habitat	0.23 0.16 0.07	0.15333333	Hydrology Biogeochemi Habitat	cal Cycling		0		Hydrology Biogeochemical Cycling Habitat		0	Bio	ydrology ogeochemical Cycling		0		rology eochemical Cycling		0
PART I - Physical, Chemical and		cators		ART I - Physical, Chemical and	d Biological Inc	dicators		PART I - Physical, Chemical a	nd Biological In	dicators	па	PART I - Physical, Chemical and	Biological Indi	icators	nabii	PART I - Physical, Chemical and	Biological Indica	ators
	Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Range	Site Score			Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL IN	DICATOR (Applies to all streams	classifications)			PHYSICAL INDICATOR (Applies to all stream	s classifications)		РН	HYSICAL INDICATOR (Applies to all streams	classifications)		PHYS	SICAL INDICATOR (Applies to all streams	classifications)	
USEPA RBP (High Gradient Data Sheet)				Low Gradient Data Sheet)				USEPA RBP (High Gradient Data Sheet)				SEPA RBP (High Gradient Data Sheet)				PA RBP (High Gradient Data Sheet)		
	0-20	0		ubstrate/Available Cover	0-20			Epifaunal Substrate/Available Cover	0-20			Epifaunal Substrate/Available Cover	0-20			oifaunal Substrate/Available Cover	0-20	
Embeddedness Velocity/ Depth Regime	0-20	10	Pool Substr Pool Variab	ate Characterization	0-20			Embeddedness Velocity/ Depth Regime	0-20			Embeddedness Velocity/ Depth Regime	0-20			nbeddedness elocity/ Depth Regime	0-20	
Sediment Deposition	0-20	16	4. Sediment D		0-20			Sediment Deposition	0-20			Sediment Deposition	0-20			ediment Deposition	0-20	
5. Channel Flow Status	0-20	0	Channel Flo		0-20			5. Channel Flow Status	0-20		5. (Channel Flow Status	0-20		5. Ch	nannel Flow Status	0-20	
Channel Alteration	0-20	20	Channel Alt	eration	0-20			6. Channel Alteration	0-20		6. (Channel Alteration	0-20		6. Ch	nannel Alteration	0-20	
7. Frequency of Riffles (or bends)	0-20	0	Channel Sir		0-20			7. Frequency of Riffles (or bends)	0-20			Frequency of Riffles (or bends)	0-20			equency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB)	0-20	18		ty (LB & RB)	0-20			8. Bank Stability (LB & RB)	0-20			Bank Stability (LB & RB)	0-20			ank Stability (LB & RB)	0-20	
Vegetative Protection (LB & RB) Riparian Vegetative Zone Width (LB & RB)	0-20	16		Protection (LB & RB) getative Zone Width (LB & RB)	0-20			9. Vegetative Protection (LB & RB)	0-20			Vegetative Protection (LB & RB) 1. Riparian Vegetative Zone Width (LB & RB)	0-20			getative Protection (LB & RB)	0-20	
Total RBP Score	Suboptimal	14 94	Total RBP Sco		Poor	0		10. Riparian Vegetative Zone Width (LB & RB) Total RBP Score	Poor	0		tal RBP Score	Poor	0	Total	Riparian Vegetative Zone Width (LB & RB)	Poor	0
Sub-Total	Опрорини	0.78333333	Sub-Total		1 001	0		Sub-Total	1 001	0		ub-Total	1 001	ŏ		Total	1 001	Ö
CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial St			DICATOR (Applies to Intermittent	t and Perennial St	reams)		CHEMICAL INDICATOR (Applies to Intermitte	nt and Perennial S	treams)		HEMICAL INDICATOR (Applies to Intermitter	nt and Perennial S	_		MICAL INDICATOR (Applies to Intermitted	nt and Perennial Str	
WVDEP Water Quality Indicators (General	I)		WVDEP Wate	r Quality Indicators (General)	1			WVDEP Water Quality Indicators (Genera	I)		w	VDEP Water Quality Indicators (General)		WVD	EP Water Quality Indicators (General	1)	
Specific Conductivity			Specific Cond	luctivity				Specific Conductivity			Sp	pecific Conductivity			Spec	cific Conductivity		
100-199 - 85 points	0-90				0-90				0-90				0-90				0-90	
рн	0-1		рн		0-1			рн	0-1		рн		0-1		рн		0-1	
5.6-5.9 = 45 points	0-80				5-90				5-90				5-90				5-90	
DO			DO					DO			DO	0			DO			
	10-30				10-30				10-30				10-30				10-30	
Sub-Total			Sub-Total			0		Sub-Total		0	Su	ub-Total		0	Sub-	Total		0
BIOLOGICAL INDICATOR (Applies to Intermit	ttent and Perennial	Streams)		INDICATOR (Applies to Intermitte	ent and Perennial	Streams)		BIOLOGICAL INDICATOR (Applies to Intern	nittent and Pereni	nial Streams)		OLOGICAL INDICATOR (Applies to Interm	ittent and Peren	inial Streams)		OGICAL INDICATOR (Applies to Interm	ittent and Perenni	al Streams)
WV Stream Condition Index (WVSCI)			WV Stream C	ondition Index (WVSCI)				WV Stream Condition Index (WVSCI)			w	V Stream Condition Index (WVSCI)			wvs	Stream Condition Index (WVSCI)		
0	0-100 0-1				0-100 0-1				0-100 0-1				0-100 0-1				0-100 0-1	
Sub-Total		0	Sub-Total			0		Sub-Total		0	Su	ub-Total		0	Sub-	Total		0
PART II - Index and U	Jnit Score			PART II - Index and	Unit Score			PART II - Index and	1 Unit Score		i 💻	PART II - Index and U	nit Score			PART II - Index and U	Jnit Score	
Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score		Index	Linear Feet	Unit Score
0.473	171	80.7975		0	0	0		0	0	0		0	0	0		0	0	0

Ver. 10-20-17

FCI Calculator for the High-Gradient Headwater Streams in Appalachia

To ensure accurate calculations, the <u>UPPERMOST STRATUM</u> of the plant community is determined based on the calculated value for V_{CCANOPY} (≥20% cover is required for tree/sapling strata). Go to the SAR Data Entry tab and enter site characteristics and data in the yellow cells. For information on determining how to split a project into SARs, see Chapter 5 of the Operational Draft Regional Guidebook for the Functional Assessment of High-Gradient Headwater Streams and Low-Gradient Perennial Streams in Appalachia (Environmental Laboratory U.S. Army Corps of Engineers 2017).

Project Name: Mountain Valley Pipeline

Location: Pittsylvania Sampling Date: 8/19/21

Project Site Before Project

Subclass for this SAR:

Ephemeral Stream

Uppermost stratum present at this SAR: SAR number: S-IJ35-EPH

Shrub/Herb Strata

Functional Results Summary: Enter Results in Section A of the Mitigation Sufficiency Calculator

Function	Functional Capacity Index
Hydrology	0.23
Biogeochemical Cycling	0.16
Habitat	0.07

Variable Measure and Subindex Summary:

Variable	Name	Average Measure	Subindex
V _{CCANOPY}	Percent canpoy over channel.	Not Used, <20%	Not Used
V _{EMBED}	Average embeddedness of channel.	1.00	0.10
V _{SUBSTRATE}	Median stream channel substrate particle size.	0.08	0.04
V _{BERO}	Total percent of eroded stream channel bank.	0.00	1.00
V_{LWD}	Number of down woody stems per 100 feet of stream.	0.00	0.00
V _{TDBH}	Average dbh of trees.	Not Used	Not Used
V_{SNAG}	Number of snags per 100 feet of stream.	0.00	0.10
V _{SSD}	Number of saplings and shrubs per 100 feet of stream.	75.00	1.00
V _{SRICH}	Riparian vegetation species richness.	0.00	0.00
V _{DETRITUS}	Average percent cover of leaves, sticks, etc.	10.00	0.12
V _{HERB}	Average percent cover of herbaceous vegetation.	93.75	1.00
V _{WLUSE}	Weighted Average of Runoff Score for Catchment.	0.42	0.44

Version 10-20-17

			High-C				ms in Ap		3		
	Team:	DW, JM		1 1010 1	Julu Ollo	ot una o	uiouiuto		M Northing:	36.891451	
Pro		Mountain V	alley Pipeline	Э					-	-79.433781	
	Location:	Pittsylvania						San	npling Date:	8/19/21	
SA	AR Number:	S-IJ35-EPH	Reach	Length (ft):	100	Stream Ty	/pe: Ephe	meral Stream			▼
	Top Strata:	Sh	rub/Herb Str	rata	(determined	d from perce	ent calculate	d in V _{CCANOP}	_r)		
Site	and Timing:	Project Site				•	Before Proje	ct			<u> </u>
Sample		1-4 in strea									
1	V _{CCANOPY}	equidistant enter at lea	points along st one value	the stream. between 0 a	Measure of the Measur	nly if tree/sa	nopy. Meas apling cover rata choice.)	is at least 20			Not Used, <20%
		cent cover n				•					ı
	30	0	0	0	0	0	0	0	0	0	
2	V_{EMBED}						t no fewer th				1.0
		-					oving it, det fine sedime				
		to the follow	ing table. It		an artificial s	urface, or co	omposed of	,			
			-	or gravel, co	bble and bo	ulder particl	es (rescaled	from Platts	, Megahan, a	and	
		Minshall 19									ļ
		Rating 5	Rating Des <5 percent		overed surr	ounded or l	ouried by fine	e sediment (or bedrock)		1
		4					or buried by				
		3					d, or buried]
		1					d, or buried buried by fir			surface)	1
	List the ratio	ngs at each		. or surface	oovereu, su	. Juniucu, Ul	Suriou by III	io godiiiiciil	(or artificial	our idob j	J
	1	1	1	1	1	1	1	1	1	1	Í
	1	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	1	
_		NA 11 1			0.1.			00 11			
3		along the st	ream; use tl	he same poi	nts and part	icles as use	no fewer that d in V _{EMBED} . (bedrock sho				0.08 in
	concrete as	s 0.0 in, sand	d or finer par	ticles as 0.0	8 in):					•	_
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
4	V _{BERO}	Total perce	nt of eroded	stream cha	nnel bank. I	Enter the tot	al number o	feet of eroo	led bank on	each side	
		and the tota up to 200%		e will be calc	culated If bo	th banks are	e eroded, to	tal erosion f	or the strear	n may be	0 %
			Left Bank:	0	ft		Right Bank:	0	ft		
Sample	Variables	5-9 within t	he entire rip	parian/buffe	r zone adja	cent to the	stream cha	nnel (25 fee	et from eac	h bank).	
5	V_{LWD}	stream read	ch. Enter the		om the entire		r and 36 incl uffer and witl				0.0
		100 leet of	Sueam wii i	e calculated		f downed w	oody stems:	(0		
6	V_{TDBH}						cover is at	least 20%).	Trees are a	t least 4	Not Used
		List the dbh	measureme	eter. Enter to ents of indivi			within the b	uffer on eacl	n side of the		Not Osed
		stream belo	w: Left Side					Right Side			I
			Len Side					ragni Side			i
											i
											i
											j
											i
											i
											i
											i
7	V _{SNAG}	Number of	snags (at le	ast 4" dhh ar	nd 36" tall) n	er 100 feet	of stream. E	nter numbe	r of snags o	n each side	
'	▼ SNAG			amount per 1				ci iluliibe	. Ji Jilays U	ii caoii side	0.0
										I	
	V	Number of	Left Side:		ody stems i	ın to 4 inaha	Right Side: s dbh) per 1		neam (meas	ure only if	
8	V_{SSD}	tree cover i	s <20%). Ei eam will be	nter number calculated.	of saplings		on each side	of the strea	m, and the		75.0
I			Left Side:	2	15		Right Side:	/	IO.		

9	9 V _{SRICH} Riparian vegetation species richness per 100 feet of stream reach. Check all species present from Group 1 in the tallest stratum. Check all exotic and invasive species present in all strata. Species richness per 100 feet and the subindex will be calculated from these data.										
		Grou	ıp 1 = 1.0					Group	2 (-1.0)		
	Acer rubrur	n		Magnolia tr	ipetala		Ailanthus ai	ltissima		Lonicera ja	oonica
	Acer sacch	arum		Nyssa sylv	atica		Albizia julibi	rissin		Lonicera ta	arica
	Aesculus fl	ava		Oxydendrum	arboreum		Alliaria petio	olata		Lotus corni	culatus
	Asimina tril	oba		Prunus ser	otina		☐ Alternanthera			Lythrum sa	licaria
	Betula alleg	haniensis		Quercus al	ba		philoxeroide	es	V	Microstegium	vimineum
	Betula lenta	9		Quercus co	occinea		Aster tatario	cus		Paulownia	omentosa
	Carya alba			Quercus im	bricaria		Cerastium t	ontanum		Polygonum d	uspidatum
	Carya glabi	ra		Quercus pr	inus		Coronilla va	aria		Pueraria m	ontana
	Carya ovali	s		Quercus ru	bra		Elaeagnus ui	mbellata		Rosa multif	lora
	Carya ovat	а		Quercus ve	elutina		Lespedeza	bicolor		Sorghum h	alepense
	Cornus flor			Sassafras a	albidum		Lespedeza			Verbena br	•
	Fagus gran	difolia	П	Tilia amerio	ana		Ligustrum ob		_		
-	Fraxinus ar		_	Tsuga cana	adensis		Ligustrum s				
	Liriodendron			Ulmus ame			9				
	Magnolia a	•									
	agoa a										
		1	Species in	Group 1				1	Species in	Group 2	
		plots shou Average pe	Id be place rcent cover clude. Enter	d roughly e of leaves, s the percent	quidistantly	/ along ea er organic r	in the riparia ch side of the material. Woo er at each su	e stream. ody debris < bplot.			each 10.00 %
		-		Side	0	4.5		Side	-		
		5	20	10	U	15	10	15	5		
11	V _{HERB} Average percentage cover of herbaceous vege woody stems at least 4" dbh and 36" tall. Beca percentages up through 200% are accepted. I subplot. Left Side					ise there m	rcent cover o	l layers of gi	ound cove	vegetation	94 %
		100	70	80	100	100	100	100	100		
Sampl	e Variable 1	2 within the	entire cato	hment of th	ne stream.						
12	V _{WLUSE}	Weighted A	verage of R	unoff Score	for watershe	ed:					0.42
			Land	Use (Choos	e From Drop	p List)			Runoff Score	% in Catch- ment	Running Percent (not >100)
	Forest and n	ative range (>	75% ground	cover)				▼	1	24.11	24.11
	Impervious a	reas (parking	lots roofs dr	iveways etc)				_	0	15.43	39.54
	· ·				750/			÷			
	Open space	(pasture, lawr	is, parks, etc.),	grass cover :	> /5%				0.3	60.46	100
								•			
								_			
								_			
								<u>_</u>			
	S-IJ	35-EPH					Not	tes:			
\	/ariable	Value	VSI				pleted using				
٧c	CANOPY	Not Used,	Not Used	` ,,			imagery an sed off of fie		•	,	
		<20%					sed off of fle lues have be				umber
	MBED	1.0	0.10		J calo						
V _s	SUBSTRATE	0.08 in	0.04								
V	BERO	0 %	1.00								
V.	WD	0.0	0.00								
		Not Used	Not Used								
	ТВН										
Vs	V_{SNAG} 0.0 0.10										
٧s		75.0	1.00								
	SSD	75.0	1.00								
Vs	SSD SRICH	75.0 0.00	1.00 0.00								
V _s	SSD SRICH DETRITUS	75.0 0.00 10.0 %	1.00 0.00 0.12								
Vs Vc Vh	SSD SRICH	75.0 0.00	1.00 0.00								

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME	LOCATION				
STATION # RIVERMILE	STREAM CLASS				
LAT LONG	RIVER BASIN				
STORET#	AGENCY				
INVESTIGATORS					
FORM COMPLETED BY	DATE	REASON FOR SURVEY			

WEATHER CONDITIONS	Now%	storm (heavy rain) rain (steady rain) showers (intermittent) %cloud cover clear/sunny	Past 24 hours	Has there been a heavy rain in the last 7 days? Yes No Air Temperature0 C Other
SITE LOCATION/MAP	Draw a map	Self- No. Self-rests No.		Down LOD Stream Pipe CL
			Timt	Stream Der mat
STREAM CHARACTERIZATION	Stream Subs Perennial Stream Orig Glacial Non-glacia Swamp an	gin Spring-fe I montane Mixture		Stream Type Coldwater Warmwater Catchment Areakm²

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Fores Field Agric	Pasture Industri	ercial	No evidence Some potential sources Obvious sources Local Watershed Erosion None Moderate Heavy						
RIPARIA VEGETA (18 meter	ΓΙΟΝ	Trees	Indicate the dominant type and record the dominant species present Trees Shrubs Grasses Herbaceous Dominant species present								
INSTREA FEATURI			ted Reach Length		Canopy Cover Partly open Part	ly shaded Shaded					
				m	High Water Mark	High Water Markm					
1 9					Proportion of Reach Re	epresented by Stream					
Area in km² (m²x1000) Estimated Stream Depth		km²	Morphology Types Riffle Pool %	Run%							
	Surface Velocitym (at thalweg)			Channelized Yes	No						
(at thatweg)					Dam Present Yes	No					
LARGE V DEBRIS	VOODY		m² of LWDn	n ² /km ² (LWD /	reach area)						
AQUATIO VEGETA		Indicate Roote Floati Domina	e the dominant type and demergent R ng Algae A	l record the do ooted submerge ttached Algae	minant species present nt Rooted floating	C					
		Portion	of the reach with aqua	tic vegetation _	%						
WATER (QUALITY	Specific	rature0 C Conductance	-	Water Odors Normal/None Sewage Petroleum Fishy	Chemical Other					
		рН	ed Oxygen		Water Surface Oils Slick Sheen Globs Fle None Other						
			strument Used		Turbidity (if not measu Clear ☐ Slightly tur Opaque Stained	r ed) rbid Turbid Other					
SEDIMENT/ SUBSTRATE		Odors Norm Chem		Petroleum None	Deposits Sludge Sawdust Relict shells	Paper fiber Sand Other					
		Oils Abser		te Profu	are the undersides blac	h are not deeply embedded, k in color?					
INC	ORGANIC SUBS		COMPONENTS (00%)		ORGANIC SUBSTRATE C (does not necessarily add						
Substrate Type	Diamete	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area					
Bedrock				Detritus	sticks, wood, coarse plant						
Boulder	> 256 mm (10")				materials (CPOM)						
Cobble	64-256 mm (2.5	"-10")		Muck-Mud	black, very fine organic						

Gravel

Sand

Silt

Clay

2-64 mm (0.1"-2.5")

0.06-2mm (gritty)

< 0.004 mm (slick)

0.004-0.06 mm

grey, shell fragments

Marl

HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME	LOCATION			
STATION # RIVERMILE	STREAM CLASS			
LAT LONG	RIVER BASIN			
STORET#	AGENCY			
INVESTIGATORS				
FORM COMPLETED BY	DATE AM PM	REASON FOR SURVEY		

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).	
ıram	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	n Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
e eva	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
ĺ	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

Total	Caare	
i otai	Score	

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME		LOCATION						
STATION #	_ RIVERMILE	STREAM CLASS						
LAT	LONG	RIVER BASIN						
STORET#		AGENCY						
INVESTIGATORS			LOT NUMBER					
FORM COMPLETED	ВҮ	DATE TIME	REASON FOR SURVEY					
HABITAT TYPES	Indicate the percentage of	icate the percentage of each habitat type present						

HABITAT TYPES	Indicate the percentage of each habitat type present Cobble% Snags% Vegetated Banks% Sand% Submerged Macrophytes% Other ()%
SAMPLE COLLECTION	Gear used D-frame kick-net Other
	How were the samples collected? wading from bank from boat
	Indicate the number of jabs/kicks taken in each habitat type. Cobble Snags Vegetated Banks Sand
	Cobble Snags Vegetated Banks Sand Submerged Macrophytes Other ()
GENERAL COMMENTS	

QUALITATIVE LISTING OF AQUATIC BIOTA

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare, 2 = Common, 3 = Abundant, 4 = Dominant

Periphyton	0	1	2	3	4	Slimes	0	1	2	3	4
Filamentous Algae	0	1	2	3	4	Macroinvertebrates	0	1	2	3	4
Macrophytes	0	1	2	3	4	Fish	0	1	2	3	4

FIELD OBSERVATIONS OF MACROBENTHOS

Indicate estimated abundance: 0 = Absent/Not Observed, 1 = Rare (1-3 organisms), 2 = Common (3-9 organisms), 3 = Abundant (>10 organisms), 4 = Dominant (>50 organisms)

Porifera	0	1	2	3	4	Anisoptera	0	1	2	3	4	Chironomidae	0	1	2	3	4
Hydrozoa	0	1	2	3	4	Zygoptera	0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemiptera	0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coleoptera	0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepidoptera	0	1	2	3	4						
Oligochaeta	0	1	2	3	4	Sialidae	0	1	2	3	4						
Isopoda	0	1	2	3	4	Corydalidae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipulidae	0	1	2	3	4						
Decapoda	0	1	2	3	4	Empididae	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simuliidae	0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabinidae	0	1	2	3	4						
						Culcidae	0	1	2	3	4						

WOLMAN PEBBLE COUNT FORM

Stream ID: S-IJ35-EPH

County: Pittsylvania
Stream Name: UNT to Pole Bridge Branch
HUC Code: 03010105 Basin: Banister

Survey Date: 8/19/2021 Surveyors: MVP Team

Representative / Riffle Type:

т 1	D A DOTTOT TO		LE COUNT	D I	m · · · · ·	T. 21	0/ ~
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cun
	Silt/Clay	< .062	S/C	^		100.00	100.00
	Very Fine	.062125		•		0.00	100.00
	Fine	.12525		•		0.00	100.00
	Medium	.255	SAND	•		0.00	100.00
	Coarse	.50-1.0	_	•		0.00	100.00
.0408	Very Coarse	1.0-2		*		0.00	100.00
.0816	Very Fine	2 -4		*		0.00	100.00
.1622	Fine	4 -5.7		*		0.00	100.00
.2231	Fine	5.7 - 8	_	A		0.00	100.00
.3144	Medium	8 -11.3	_	A		0.00	100.00
.4463	Medium	11.3 - 16	GRAVEL	▲		0.00	100.00
.6389	Coarse	16 -22.6		A		0.00	100.00
.89 - 1.26	Coarse	22.6 - 32		*		0.00	100.00
1.26 - 1.77	Vry Coarse	32 - 45		*		0.00	100.00
1.77 -2.5	Vry Coarse	45 - 64		*		0.00	100.00
2.5 - 3.5	Small	64 - 90		•		0.00	100.00
3.5 - 5.0	Small	90 - 128	COBBLE	-		0.00	100.00
5.0 - 7.1	Large	128 - 180	COBBLE	-		0.00	100.00
7.1 - 10.1	Large	180 - 256		-		0.00	100.00
10.1 - 14.3	Small	256 - 362		•		0.00	100.00
14.3 - 20	Small	362 - 512		▲		0.00	100.00
20 - 40	Medium	512 - 1024	BOULDER	^		0.00	100.00
40 - 80	Large	1024 -2048		^		0.00	100.0
80 - 160	Vry Large	2048 -4096		•		0.00	100.00
	Bedrock		BDRK	•		0.00	100.00
				Totals:	0		

RIVERMORPH PARTICLE SUMMARY

River Name: UNT to Pole Bridge Branch Reach Name: S-IJ35-EPH Representative Survey Date: 08/19/2021

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100.00 0.00	100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.01 0.02 0.03 0.05 0.06 0.06 100 0		

Total Particles = 100.

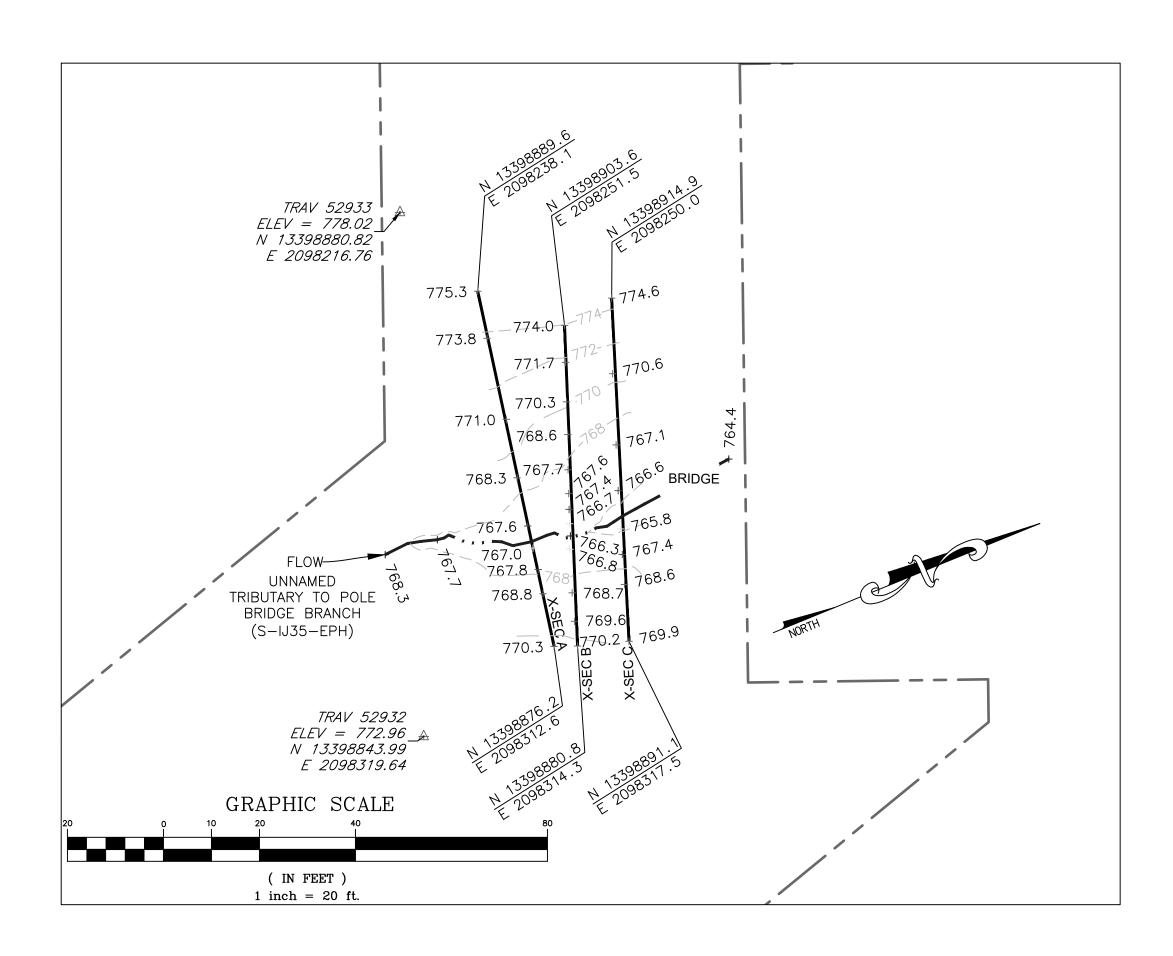
Ephemeral Stream Assessment Form (Form 1a) Unified Stream Methodology for use in Virginia For use in ephemeral streams Cowardin Impact Project # **Project Name** SAR# Locality HUC Date Class Length **Factor** Mountain Valley Pipeline (Mountain 22865.06 03010105 8/19/21 Pittsylvania R6 S-IJ35-EPH 171 1 Valley Pipeline, LLC) Name(s) of Evaluator(s) Stream Name and Information SAR Length JM, DW Spread I; UNT to Pole Bridge Branch 230 2. RIPARIAN BUFFERS: Assess both bank's 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable) **Conditional Category** NOTES>> Marginal Optimal Suboptimal Poor Low Marginal: High Poor: Lawns Non-maintained mowed, and High Suboptimal Low Suboptimal High Marginal: maintained areas Low Poor: dense herbaceou Riparian areas with Riparian areas with Non-maintained egetation, riparia nurseries; no-till cropland; actively Impervious surfaces, mine tree stratum (dbh > 3 inches) present, tree stratum (dbh : 3 inches) present ense herbaceo reas lacking shru and tree stratum, Tree stratum (dbh > 3 inches) present spoil lands, vegetation with grazed pasture Riparian with 30% to 60% with >30% tree hay production, onds, open wate If present, tree with > 60% tree canopy cover and an non-maintained understory. Wetlands ther a shrub lay parsely vegetate non-maintained denuded surface nopy cover and maintained tree canopy cover and containing both or a tree layer (dbl > 3 inches) row crops, active feed lots, trails, or **Buffers** area, recently nderstory. Recer cutover (dense vegetation). herbaceous and present, with <30% stratum (dbh >3 seeded and other comparable shrub lavers or a tree canopy cover inches) present with <30% tree stabilized, or othe comparable conditions. understory. canopy cover with maintained understory. condition. High Low High High Low Low Condition 1.5 1.2 1.1 0.85 0.75 0.6 0.5 Scores 1. Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors. Ensure the sums 2. Determine square footage for each by measuring or estimating length and width. Calculators are provided for you below of % Riparian Enter the % Riparian Area and Score for each riparian category in the blocks below Blocks equal 100 30% 70% 100% % Riparian Area> Right Bank 0.85 0.6 Score > CI= (Sum % RA * Scores*0.01)/2 100% 100% CI % Riparian Area> Rt Bank CI > 0.68 Left Bank Lt Bank CI > 1.50 1.09 REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH

NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

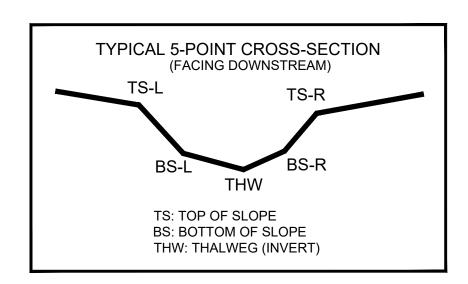
THE REACH CONDITION INDEX (RCI) >> 0.55

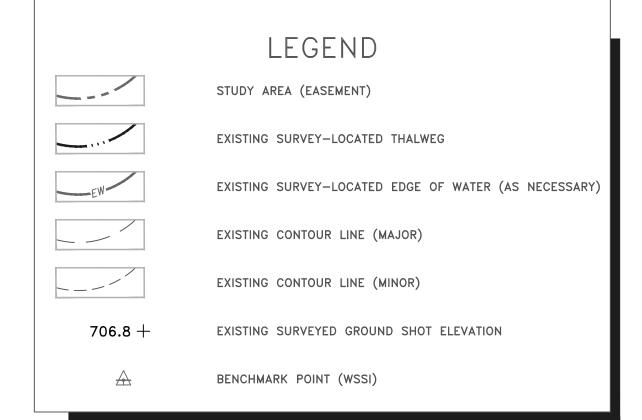
RCI= (Riparian CI)/2

COMPENSATION REQUIREMENT (CR) >> 94

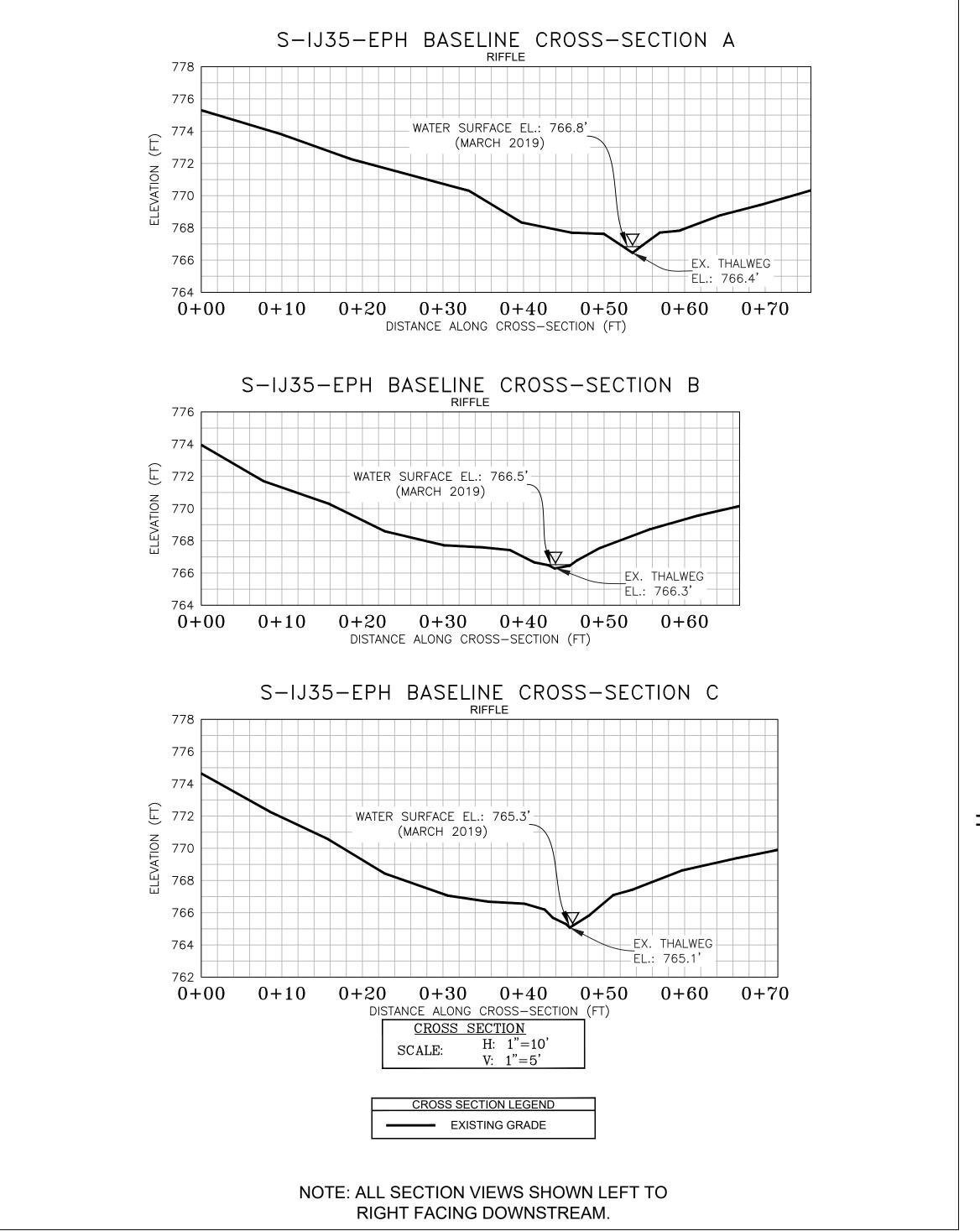

CR = RCI X LF X IF

INSERT PHOTOS:




CAPTION. Assessment is limited to areas within the temporary ROW.

DESCRIBE PROPOSED IMPACT:	
PF	ROVIDED UNDER SEPARATE COVER


CL STAKEOUT POINTS: S-IJ35-EPH CROSS SECTION B (PIPE CL)													
	PRE-CROSSING POST-CROSSING												
PT. LOC.	NORTHING	EASTING	ELEV	VERT.	HORZ.								
PT. LOC.	NORTHING	EASTING	ELEV	DIFF.	DIFF.								
TS-L	13398889.97	2098287.35	767.42										
BS-L	13398888.96	2098290.15	766.66										
THW	13398888.12	2098292.57	766.28										
BS-R	13398887.00	2098295.10	766.78										
TS-R	13398885.93	2098297.73	767.55										



SURVEY NOTES:

- 1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on March 26, 2019.
- 2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.
- 3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).
- 4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.
- 5. All section views shown are left to right facing downstream.
- 6. Cross-section B shot at location of pipe centerline (based on best professional judgement).

PRE-CROSSING PHOTOS

PHOTO TAKEN FROM BRIDGE LOOKING

PHOTO TAKEN FROM LEFT BANK LOOKING DOWNSTREAM TO THE NORTH 03/26/2019

POST-CROSSING PHOTOS

PENDING CROSSING

PHOTO TAKEN LOOKING

PENDING CROSSING

PHOTO TAKEN LOOKING

Horizontal Datum: NAD 1983 UTM ZONE 17

295.

Branch

S-1J35-EPH

sing

Vertical Datum: NAVD 88 Boundary and Topo Source:

WSSI 2' C.I. Topo Draft Approved JSF NAS EJC

Sheet #

1 of 1

Computer File Name:

Survey\22000s\22800\22865.03\Spread I Work Dwgs