### **Baseline Assessment – Stream Attributes**

# Reach S-Q3 (Pipeline ROW) Perennial Spread I Pittsylvania County, Virginia

| Data                                    | Included                                                      |
|-----------------------------------------|---------------------------------------------------------------|
| Photos                                  | ✓                                                             |
| SWVM Form                               | ✓                                                             |
| FCI Calculator and HGM Form             | N/A – Perennial stream (not shadeable, slope less<br>than 4%) |
| RBP Physical Characteristics Form       | ✓                                                             |
| Water Quality Data                      | ✓                                                             |
| RBP Habitat Form                        | ✓                                                             |
| RBP Benthic Form                        | ✓                                                             |
| Benthic Identification Sheet            | ✓                                                             |
| Wolman Pebble Count                     | ✓                                                             |
| RiverMorph Data Sheet                   | ✓                                                             |
| USM Form (Virginia Only)                | <b>√</b>                                                      |
| Longitudinal Profile and Cross Sections | ✓                                                             |



Location, Orientation, Photographer Initials: Upstream View of impact area inside LOD, SK/VM



Photo Type: US RB VIEW
Location, Orientation, Photographer Initials: Upstream View of impact area inside LOD, SK/VM



Location, Orientation, Photographer Initials: Downstream View of impact area inside LOD, SK/VM



Location, Orientation, Photographer Initials: Downstream View of impact area inside LOD, SK/VM

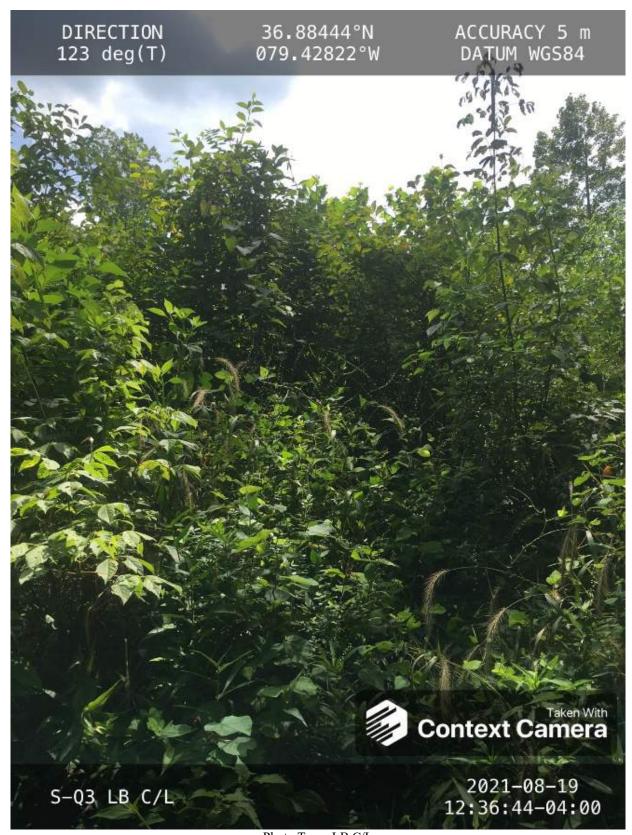
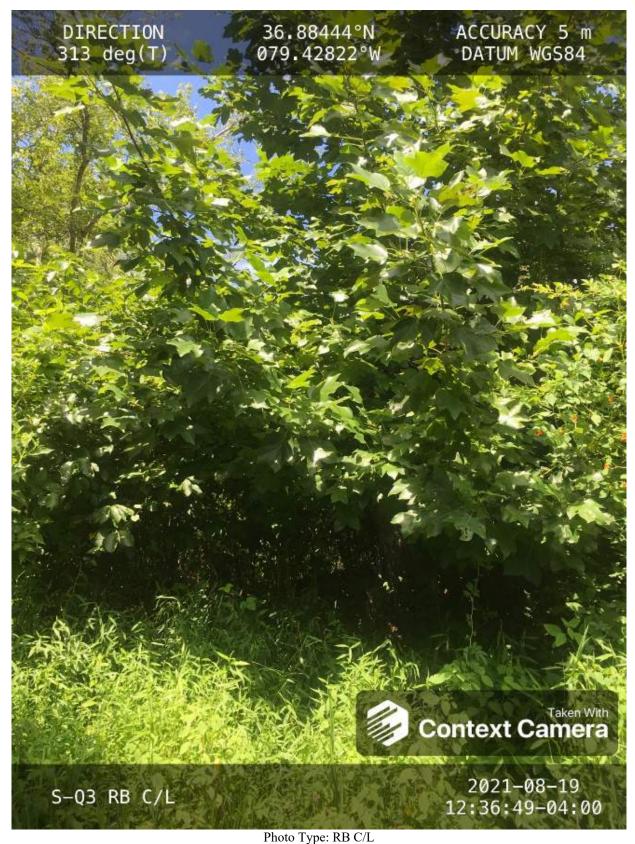




Photo Type: LB C/L
Location, Orientation, Photographer Initials: Standing on Left Bank looking down pipe C/L, SK/VM



Location, Orientation, Photographer Initials: Standing on Right Bank looking down pipe C/L, SK/VM




Photo Type: DS COND Location, Orientation, Photographer Initials: Downstream conditions outside LOD, SK/VM

| USACE FILE NO./ Project Name: (v2.1, Sept 2015)                                                  |                       | Moun                  | ntain Valley Pipeline                                                      |                              | COORDINATES:<br>cimal Degrees) | Lat. | 36.884444                                                                    | Lon.                | -79.42822    | WEATHER:                                                                     | Sunny                          | DATE:                                                                        | 8/19/2021                      |
|--------------------------------------------------------------------------------------------------|-----------------------|-----------------------|----------------------------------------------------------------------------|------------------------------|--------------------------------|------|------------------------------------------------------------------------------|---------------------|--------------|------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------|--------------------------------|
| IMPACT STREAM/SITE ID AND SITE DESCRIPTION: (watershed size {acreage}, unaltered or impairments) |                       |                       | S                                                                          | S-Q3/2863.27ac               |                                |      | MITIGATION STREAM CLASS./3 (watershed size {acreage}                         |                     |              | :                                                                            |                                | Comments:                                                                    |                                |
| STREAM IMPACT LENGTH:                                                                            | 75                    | FORM OF<br>MITIGATION | l: RESTORATION (Levels I-III                                               |                              | OORDINATES:<br>cimal Degrees)  | Lat. |                                                                              | Lon.                |              | PRECIPITATION PAST 48 HRS:                                                   | Yes                            | Mitigation Length:                                                           |                                |
| Column No. 1- Impact Existin                                                                     | g Condition (Deb      | it)                   | Column No. 2- Mitigation Exi                                               | sting Condition - Base       | eline (Credit)                 |      | Column No. 3- Mitigation Pro<br>Post Completion                              |                     | ears /       | Column No. 4- Mitigation Pro<br>Post Completion                              |                                | Column No. 5- Mitigation Project                                             | ed at Maturity (Credit)        |
| Stream Classification:                                                                           | Peren                 | nnial                 | Stream Classification:                                                     |                              |                                |      | Stream Classification:                                                       |                     | 0            | Stream Classification:                                                       | 0                              | Stream Classification:                                                       | 0                              |
| Percent Stream Channel S                                                                         | lope                  | -0.97                 | Percent Stream Chan                                                        | nel Slope                    |                                |      | Percent Stream Channel SI                                                    | ope                 | 0            | Percent Stream Channel S                                                     | Slope 0                        | Percent Stream Channel S                                                     | lope 0                         |
| HGM Score (attach d                                                                              | lata forms):          |                       | HGM Score (a                                                               | ttach data forms):           |                                |      | HGM Score (attach                                                            | data forms):        |              | HGM Score (attach                                                            | data forms):                   | HGM Score (attach d                                                          | ata forms):                    |
|                                                                                                  |                       | Average               |                                                                            |                              | Average                        |      |                                                                              |                     | Average      |                                                                              | Average                        |                                                                              | Average                        |
| Hydrology Biogeochemical Cycling                                                                 |                       | 0                     | Hydrology<br>Biogeochemical Cycling                                        |                              | 0                              |      | Hydrology<br>Biogeochemical Cycling                                          |                     | 0            | Hydrology<br>Biogeochemical Cycling                                          | 0                              | Hydrology<br>Biogeochemical Cycling                                          | 0                              |
| Habitat                                                                                          |                       |                       | Habitat                                                                    |                              |                                |      | Habitat                                                                      |                     |              | Habitat                                                                      |                                | Habitat                                                                      |                                |
| PART I - Physical, Chemical and                                                                  | l Biological Indica   | ators                 | PART I - Physical, Chem                                                    | ical and Biological Ind      | licators                       |      | PART I - Physical, Chemical an                                               | d Biological Ind    | licators     | PART I - Physical, Chemical and                                              | d Biological Indicators        | PART I - Physical, Chemical and                                              | Biological Indicators          |
|                                                                                                  | Points Scale Range    | Site Score            |                                                                            | Points Scale Range           | Site Score                     |      |                                                                              | Points Scale Range  | Site Score   |                                                                              | Points Scale Range Site Score  |                                                                              | Points Scale Range Site Score  |
| PHYSICAL INDICATOR (Applies to all streams                                                       | s classifications)    |                       | PHYSICAL INDICATOR (Applies to all s                                       | streams classifications)     |                                |      | PHYSICAL INDICATOR (Applies to all streams                                   | classifications)    |              | PHYSICAL INDICATOR (Applies to all stream                                    | ns classifications)            | PHYSICAL INDICATOR (Applies to all streams                                   | s classifications)             |
|                                                                                                  | 3 diagoniounons)      |                       | · · · ·                                                                    | ,                            |                                |      |                                                                              | oladoliidationo)    |              | , · · ·                                                                      | is diastinations)              |                                                                              | , oracomounts)                 |
| USEPA RBP (High Gradient Data Sheet)  1. Epifaunal Substrate/Available Cover                     | 0-20                  | 15                    | USEPA RBP (Low Gradient Data Shot)  1. Epifaunal Substrate/Available Cover |                              |                                |      | USEPA RBP (High Gradient Data Sheet)  1. Epifaunal Substrate/Available Cover | 0-20                |              | USEPA RBP (High Gradient Data Sheet)  1. Epifaunal Substrate/Available Cover | 0-20                           | USEPA RBP (High Gradient Data Sheet)  1. Epifaunal Substrate/Available Cover | 0-20                           |
| 2. Embeddedness                                                                                  | 0-20                  | 6                     | Pool Substrate Characterization                                            | 0-20                         |                                |      | 2. Embeddedness                                                              | 0-20                |              | 2. Embeddedness                                                              | 0-20                           | 2. Embeddedness                                                              | 0-20                           |
| 3. Velocity/ Depth Regime                                                                        | 0-20                  | 5                     | 3. Pool Variability                                                        | 0-20                         |                                |      | 3. Velocity/ Depth Regime                                                    | 0-20                |              | 3. Velocity/ Depth Regime                                                    | 0-20                           | 3. Velocity/ Depth Regime                                                    | 0-20                           |
| 4. Sediment Deposition                                                                           | 0-20                  | 5                     | 4. Sediment Deposition                                                     | 0-20                         |                                |      | Sediment Deposition                                                          | 0-20                |              | Sediment Deposition                                                          | 0-20                           | Sediment Deposition                                                          | 0-20                           |
| 5. Channel Flow Status                                                                           | 0-20                  | 11                    | 5. Channel Flow Status                                                     | 0-20                         |                                |      | 5. Channel Flow Status                                                       | 0-20                |              | 5. Channel Flow Status                                                       | 0-20                           | 5. Channel Flow Status                                                       | 0-20                           |
| 6. Channel Alteration                                                                            | 0-20                  | 16                    | 6. Channel Alteration                                                      | 0-20                         |                                |      | 6. Channel Alteration                                                        | 0-20                |              | 6. Channel Alteration                                                        | 0-20                           | 6. Channel Alteration                                                        | 0-20                           |
| 7. Frequency of Riffles (or bends)                                                               | 0-20                  | 5                     | 7. Channel Sinuosity                                                       | 0-20                         |                                |      | 7. Frequency of Riffles (or bends)                                           | 0-20                |              | 7. Frequency of Riffles (or bends)                                           | 0-20                           | 7. Frequency of Riffles (or bends)                                           | 0-20                           |
| 8. Bank Stability (LB & RB)                                                                      | 0-20                  | 10                    | 8. Bank Stability (LB & RB)                                                | 0-20                         |                                |      | 8. Bank Stability (LB & RB)                                                  | 0-20                |              | 8. Bank Stability (LB & RB)                                                  | 0-20                           | 8. Bank Stability (LB & RB)                                                  | 0-20                           |
| 9. Vegetative Protection (LB & RB)                                                               | 0-20                  | 16                    | 9. Vegetative Protection (LB & RB)                                         | 0-20                         |                                |      | 9. Vegetative Protection (LB & RB)                                           | 0-20                |              | 9. Vegetative Protection (LB & RB)                                           | 0-20                           | 9. Vegetative Protection (LB & RB)                                           | 0-20                           |
| 10. Riparian Vegetative Zone Width (LB & RB)                                                     | 0-20                  | 14                    | 10. Riparian Vegetative Zone Width (LB &                                   |                              |                                |      | 10. Riparian Vegetative Zone Width (LB & RB)                                 | 0-20                |              | 10. Riparian Vegetative Zone Width (LB & RB)                                 | 0-20                           | 10. Riparian Vegetative Zone Width (LB & RB)                                 | 0-20                           |
| Total RBP Score                                                                                  | Marginal              | 103                   | Total RBP Score                                                            | Poor                         | 0                              |      | Total RBP Score                                                              | Poor                | 0            | Total RBP Score                                                              | Poor 0                         | Total RBP Score                                                              | Poor 0                         |
| Sub-Total                                                                                        |                       | 0.515                 | Sub-Total                                                                  |                              | 0                              |      | Sub-Total                                                                    |                     | 0            | Sub-Total                                                                    | 0                              | Sub-Total                                                                    | 0                              |
| CHEMICAL INDICATOR (Applies to Intermitte                                                        | nt and Perennial Stre | eams)                 | CHEMICAL INDICATOR (Applies to Inte                                        | ermittent and Perennial Str  | eams)                          |      | CHEMICAL INDICATOR (Applies to Intermitten                                   | t and Perennial Str | eams)        | CHEMICAL INDICATOR (Applies to Intermitt                                     | ent and Perennial Streams)     | CHEMICAL INDICATOR (Applies to Intermitten                                   | nt and Perennial Streams)      |
| WVDEP Water Quality Indicators (Genera                                                           | l)                    |                       | WVDEP Water Quality Indicators (G                                          | eneral)                      |                                |      | WVDEP Water Quality Indicators (General)                                     |                     |              | WVDEP Water Quality Indicators (Gener                                        | al)                            | WVDEP Water Quality Indicators (General                                      | )                              |
| Specific Conductivity                                                                            | _                     |                       | Specific Conductivity                                                      |                              |                                |      | Specific Conductivity                                                        | _                   |              | Specific Conductivity                                                        |                                | Specific Conductivity                                                        |                                |
| <=99 - 90 points                                                                                 | 0-90                  | 67                    |                                                                            | 0-90                         |                                |      |                                                                              | 0-90                |              |                                                                              | 0-90                           |                                                                              | 0-90                           |
| pH                                                                                               |                       | (2)                   | рН                                                                         |                              | 0                              |      | pH                                                                           |                     |              | рН                                                                           |                                | pH                                                                           |                                |
|                                                                                                  | 0-80                  | 7.1                   |                                                                            | 5-90                         |                                |      |                                                                              | 5-90 0-1            |              |                                                                              | 5-90 0-1                       |                                                                              | 5-90 0-1                       |
| 6.0-8.0 = 80 points                                                                              |                       | ***                   |                                                                            |                              |                                |      |                                                                              |                     |              |                                                                              |                                |                                                                              |                                |
| DO                                                                                               |                       |                       | DO                                                                         |                              |                                |      | DO                                                                           | T                   |              | DO                                                                           |                                | ВО                                                                           |                                |
| >5.0 = 30 points                                                                                 | 10-30                 | 6.72                  |                                                                            | 10-30                        |                                |      |                                                                              | 10-30               |              |                                                                              | 10-30                          |                                                                              | 10-30                          |
| Sub-Total                                                                                        |                       | 1                     | Sub-Total                                                                  | <b>'</b>                     | 0                              |      | Sub-Total                                                                    |                     | 0            | Sub-Total                                                                    | 0                              | Sub-Total                                                                    | 0                              |
| BIOLOGICAL INDICATOR (Applies to Intermit                                                        | ttent and Perennial S | treams)               | BIOLOGICAL INDICATOR (Applies to I                                         | Intermittent and Perennial S | Streams)                       |      | BIOLOGICAL INDICATOR (Applies to Interm                                      | ittent and Perenn   | ial Streams) | BIOLOGICAL INDICATOR (Applies to Inter                                       | mittent and Perennial Streams) | BIOLOGICAL INDICATOR (Applies to Interm                                      | nittent and Perennial Streams) |
| WV Stream Condition Index (WVSCI)                                                                |                       |                       | WV Stream Condition Index (WVSC                                            | 1)                           |                                |      | WV Stream Condition Index (WVSCI)                                            |                     |              | WV Stream Condition Index (WVSCI)                                            |                                | WV Stream Condition Index (WVSCI)                                            |                                |
|                                                                                                  | 0-100 0-1             |                       |                                                                            | 0-100 0-1                    |                                |      |                                                                              | 0-100 0-1           |              |                                                                              | 0-100 0-1                      |                                                                              | 0-100 0-1                      |
| Sub-Total                                                                                        |                       | 0                     | Sub-Total                                                                  |                              | 0                              |      | Sub-Total                                                                    |                     | 0            | Sub-Total                                                                    | 0                              | Sub-Total                                                                    | 0                              |
|                                                                                                  |                       |                       |                                                                            |                              |                                |      |                                                                              |                     |              |                                                                              |                                |                                                                              |                                |
| PART II - Index and U                                                                            | Jnit Score            |                       | PART II - Inde                                                             | ex and Unit Score            |                                |      | PART II - Index and                                                          | Unit Score          |              | PART II - Index and                                                          | Unit Score                     | PART II - Index and U                                                        | Init Score                     |
|                                                                                                  |                       |                       |                                                                            |                              |                                |      |                                                                              |                     |              |                                                                              |                                |                                                                              |                                |
| Index                                                                                            | Linear Feet           | Unit Score            | Index                                                                      | Linear Feet                  | Unit Score                     |      | Index                                                                        | Linear Feet         | Unit Score   | Index                                                                        | Linear Feet Unit Score         | Index                                                                        | Linear Feet Unit Score         |
| 0.758                                                                                            | 75                    | 56.8125               | 0                                                                          | 0                            | 0                              |      | 0                                                                            | 0                   | 0            | 0                                                                            | 0 0                            | 0                                                                            | 0 0                            |

## PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

| STREAM NAME S-Q3           |                                 | LOCATION Pittsylvania Cou  | intv                                                      |                          |  |  |  |  |
|----------------------------|---------------------------------|----------------------------|-----------------------------------------------------------|--------------------------|--|--|--|--|
|                            | IVERMILE                        | STREAM CLASS Perennial     | ·····J                                                    |                          |  |  |  |  |
|                            | ONG -79.42822                   | RIVER BASIN Banister       |                                                           |                          |  |  |  |  |
| STORET#                    |                                 | AGENCY VADEQ               |                                                           |                          |  |  |  |  |
| INVESTIGATORS SK VA        | Λ                               |                            |                                                           |                          |  |  |  |  |
| FORM COMPLETED BY          | SK                              | DATE 8/19/21<br>TIME 14:00 | REASON FOR SURVE                                          | Y<br>Baseline Assessment |  |  |  |  |
| WEATHER<br>CONDITIONS      | rain ( showers 20 % 7 %c        | (heavy rain) (steady rain) | Has there been a heavy race No Air Temperature 33 0 Other | -                        |  |  |  |  |
| SITE LOCATION/MAP          | LOD                             | ream 50ftx9f               | Coming In                                                 | Timber ma                |  |  |  |  |
| STREAM<br>CHARACTERIZATION | Stream Subsystem Perennial Inte | ermittent                  | Stream Type<br>□Coldwater ☑ Warmv<br>Catchment Area 11.59 | vaterkm²                 |  |  |  |  |

# PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

| WATERS<br>FEATURI              |                                                                                             | Predom  ✓ Fores  ✓ Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                           | nmercial                          | Local Watershed NPS  No evidence Son                                                               |                                                          |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|
|                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ultural 🔲 Oth                                                                             |                                   | Obvious sources  Local Watershed Eros  None ☐ Moderate                                             |                                                          |  |  |
| RIPARIA<br>VEGETA<br>(18 meter | TION                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                   | minant species present Grasses  Ho                                                                 |                                                          |  |  |
| INSTREA<br>FEATURI             |                                                                                             | Estimat<br>Samplin<br>Area in<br>Estimat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | km² (m²x1000)  ed Stream Depth Velocity  0.6                                              | m m m² km² m²                     |                                                                                                    | ily shaded □Shaded  □ m  cepresented by Stream  Run □ 00 |  |  |
| LARGE V<br>DEBRIS              | LWD <u>o</u> m <sup>2</sup> Density of LWDm <sup>2</sup> /km <sup>2</sup> (LWD/ reach area) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                   |                                                                                                    |                                                          |  |  |
| AQUATIO<br>VEGETA              |                                                                                             | Roote<br>Floati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e the dominant type<br>d emergent<br>ng Algae ant species present<br>of the reach with ag | Rooted submerge<br>Attached Algae |                                                                                                    | ☐Free floating                                           |  |  |
| WATER (                        | QUALITY                                                                                     | Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rature 23.9 D C Conductance 67.0 D ed Oxygen 6.72 D                                       |                                   |                                                                                                    | e<br> Chemical<br> Other                                 |  |  |
|                                |                                                                                             | pH <u>7.1 D</u><br>Turbidi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                   | Water Surface Oils Slick Sheen None Other Turbidity (if not meass Clear Slightly tu Opaque Stained |                                                          |  |  |
| SEDIMEN<br>SUBSTRA             |                                                                                             | Odors Norm Chem Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |                                   | Deposits □ Sludge □ Sawdust □ Relict shells □ □ Lpoking at stones whice are the undersides blace   | ☐Paper fiber ☐Sand ☐Other                                |  |  |
|                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | iciate1 101u                      |                                                                                                    |                                                          |  |  |
| INC                            |                                                                                             | STRATE of the state of the stat | COMPONENTS<br>00%)                                                                        |                                   | ORGANIC SUBSTRATE C<br>(does not necessarily add                                                   |                                                          |  |  |
| Substrate<br>Type              | Diamet                                                                                      | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % Composition i<br>Sampling Reach                                                         |                                   | Characteristic                                                                                     | % Composition in<br>Sampling Area                        |  |  |
| Bedrock<br>Boulder             | > 256 mm (10")                                                                              | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           | Detritus                          | sticks, wood, coarse plant<br>materials (CPOM)                                                     | 0                                                        |  |  |
| Cobble                         | 64-256 mm (2.5                                                                              | 5"-10")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                         | Muck-Mud                          | black, very fine organic<br>(FPOM)                                                                 |                                                          |  |  |
| Gravel                         | 2-64 mm (0.1"-                                                                              | 2.5")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                        |                                   | (FT OIVI)                                                                                          |                                                          |  |  |
| Sand                           | 0.06-2mm (gritt                                                                             | y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                        | Marl                              | grey, shell fragments                                                                              |                                                          |  |  |
| Silt                           | 0.004-0.06 mm                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                        | _                                 |                                                                                                    |                                                          |  |  |
| Clay                           | < 0.004 mm (sli                                                                             | ck)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                                                        |                                   |                                                                                                    |                                                          |  |  |

#### HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

| STREAM NAME S-Q3                           | LOCATION Pittsylvania County                                        |  |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------|--|--|--|--|
| STATION # RIVERMILE                        | STREAM CLASS Perennial                                              |  |  |  |  |
| LAT <u>36.884444</u> LONG <u>-79.42822</u> | RIVER BASIN Banister                                                |  |  |  |  |
| STORET#                                    | AGENCY VADEQ                                                        |  |  |  |  |
| INVESTIGATORS SK, VM                       |                                                                     |  |  |  |  |
| FORM COMPLETED BY SK                       | DATE 8/19/21 REASON FOR SURVEY TIME 14:00 AM PM Baseline Assessment |  |  |  |  |

|                                              | Habitat                                       |                                                                                                                                                                                                                                                                               | Condition                                                                                                                                                                                                                                                   | ı Category                                                                                                                                                                                                                                |                                                                                                                                                                                               |  |  |
|----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                              | Parameter                                     | Optimal                                                                                                                                                                                                                                                                       | Suboptimal                                                                                                                                                                                                                                                  | Marginal                                                                                                                                                                                                                                  | Poor                                                                                                                                                                                          |  |  |
|                                              | 1. Epifaunal<br>Substrate/<br>Available Cover | Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | 40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). | 20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.                                                                                                                        | Less than 20% stable<br>habitat; lack of habitat is<br>obvious; substrate<br>unstable or lacking.                                                                                             |  |  |
|                                              | SCORE 15                                      | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |
| ı sampling reach                             | 2. Embeddedness                               | Gravel, cobble, and<br>boulder particles are 0-<br>25% surrounded by fine<br>sediment. Layering of<br>cobble provides diversity<br>of niche space.                                                                                                                            | Gravel, cobble, and<br>boulder particles are 25-<br>50% surrounded by fine<br>sediment.                                                                                                                                                                     | Gravel, cobble, and<br>boulder particles are 50-<br>75% surrounded by fine<br>sediment.                                                                                                                                                   | Gravel, cobble, and<br>boulder particles are more<br>than 75% surrounded by<br>fine sediment.                                                                                                 |  |  |
| ted in                                       | SCORE 6                                       | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |
| Parameters to be evaluated in sampling reach | 3. Velocity/Depth<br>Regime                   | All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)                                                                                                                                             | Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).                                                                                                                                                    | Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).                                                                                                                                         | Dominated by 1 velocity/<br>depth regime (usually<br>slow-deep).                                                                                                                              |  |  |
| ıram                                         | SCORE 5                                       | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |
| P <sub>2</sub>                               | 4. Sediment<br>Deposition                     | Little or no enlargement<br>of islands or point bars<br>and less than 5% of the<br>bottom affected by<br>sediment deposition.                                                                                                                                                 | Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.                                                                                                                    | Moderate deposition of<br>new gravel, sand or fine<br>sediment on old and new<br>bars; 30-50% of the<br>bottom affected; sediment<br>deposits at obstructions,<br>constrictions, and bends;<br>moderate deposition of<br>pools prevalent. | Heavy deposits of fine<br>material, increased bar<br>development; more than<br>50% of the bottom<br>changing frequently;<br>pools almost absent due to<br>substantial sediment<br>deposition. |  |  |
|                                              | SCORE 5                                       | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |
|                                              | 5. Channel Flow<br>Status                     | Water reaches base of<br>both lower banks, and<br>minimal amount of<br>channel substrate is<br>exposed.                                                                                                                                                                       | Water fills >75% of the available channel; or <25% of channel substrate is exposed.                                                                                                                                                                         | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.                                                                                                                                                 | Very little water in<br>channel and mostly<br>present as standing pools.                                                                                                                      |  |  |
|                                              | score 11                                      | 20 19 18 17 16                                                                                                                                                                                                                                                                | 15 14 13 12 11                                                                                                                                                                                                                                              | 10 9 8 7 6                                                                                                                                                                                                                                | 5 4 3 2 1 0                                                                                                                                                                                   |  |  |

#### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

|                                                        | Habitat                                                                                       |                                                                                                                                                                                                                                                                                      | Conditio                                                                                                                                                                                                                                                                   | n Category                                                                                                                                                                                                  |                                                                                                                                                                                                   |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                        | Parameter                                                                                     | Optimal                                                                                                                                                                                                                                                                              | Suboptimal                                                                                                                                                                                                                                                                 | Marginal                                                                                                                                                                                                    | Poor                                                                                                                                                                                              |  |  |
|                                                        | 6. Channel<br>Alteration                                                                      | Channelization or<br>dredging absent or<br>minimal; stream with<br>normal pattern.                                                                                                                                                                                                   | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.                                                                    | Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.                                                          | Banks shored with gabion<br>or cement; over 80% of<br>the stream reach<br>channelized and<br>disrupted. Instream<br>habitat greatly altered or<br>removed entirely.                               |  |  |
|                                                        | SCORE 16                                                                                      | 20 19 18 17 16                                                                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                                                             | 10 9 8 7 6                                                                                                                                                                                                  | 5 4 3 2 1 0                                                                                                                                                                                       |  |  |
| ing reach                                              | 7. Frequency of<br>Riffles (or bends)                                                         | Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.     | Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.                                                                                                                                                          | Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.                                                           | Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.                                                         |  |  |
| ampl                                                   | SCORE 5                                                                                       | 20 19 18 17 16                                                                                                                                                                                                                                                                       | 15 14 13 12 11                                                                                                                                                                                                                                                             | 10 9 8 7 6                                                                                                                                                                                                  | 5 4 3 2 1 0                                                                                                                                                                                       |  |  |
| Parameters to be evaluated broader than sampling reach | 8. Bank Stability (score each bank)  Note: determine left or right side by facing dewastraam. | Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.                                                                                                                                                     | Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.                                                                                                                                                     | Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.                                                                                                    | Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.                                                 |  |  |
| e eva                                                  | SCORE 5                                                                                       | Left Bank 10 9                                                                                                                                                                                                                                                                       | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                       | 2 1 0                                                                                                                                                                                             |  |  |
| to b                                                   | SCORE 5                                                                                       | Right Bank 10 9                                                                                                                                                                                                                                                                      | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                       | 2 1 0                                                                                                                                                                                             |  |  |
| Parameters to b                                        | 9. Vegetative<br>Protection (score<br>each bank)                                              | More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally. | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining. | 50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining. | Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height. |  |  |
|                                                        | SCORE 8                                                                                       | Left Bank 10 9                                                                                                                                                                                                                                                                       | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                       | 2 1 0                                                                                                                                                                                             |  |  |
|                                                        | SCORE 8                                                                                       | Right Bank 10 9                                                                                                                                                                                                                                                                      | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                       | 2 1 0                                                                                                                                                                                             |  |  |
|                                                        | 10. Riparian Vegetative Zone Width (score each bank riparian zone)                            | Width of riparian zone<br>>18 meters; human<br>activities (i.e., parking<br>lots, roadbeds, clear-cuts,<br>lawns, or crops) have not<br>impacted zone.                                                                                                                               | Width of riparian zone<br>12-18 meters; human<br>activities have impacted<br>zone only minimally.                                                                                                                                                                          | Width of riparian zone 6-<br>12 meters; human<br>activities have impacted<br>zone a great deal.                                                                                                             | Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.                                                                                                       |  |  |
|                                                        | SCORE 7                                                                                       | Left Bank 10 9                                                                                                                                                                                                                                                                       | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                       | 2 1 0                                                                                                                                                                                             |  |  |
|                                                        | SCORE 7                                                                                       | Right Bank 10 9                                                                                                                                                                                                                                                                      | 8 7 6                                                                                                                                                                                                                                                                      | 5 4 3                                                                                                                                                                                                       | 2 1 0                                                                                                                                                                                             |  |  |

Total Score 103

#### BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

| STREAM NAME S-Q3                                                                                                                                                           |                                 |                                          |                                                |                                           |                                                                                                                                                                                                                                            | LOCATION Pittsylvania County                                                                                                                                                            |                                      |                                                    |                                                 |                                       |                                          |                                                                             |                                          |                                  |                                |                            |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|-------------------------------------------------|---------------------------------------|------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|----------------------------------|--------------------------------|----------------------------|---------|
| STATION #                                                                                                                                                                  | R                               | IVE                                      | RMI                                            | LE_                                       |                                                                                                                                                                                                                                            | STREAM C                                                                                                                                                                                | LASS F                               | ere                                                | nnial                                           |                                       |                                          |                                                                             |                                          |                                  |                                |                            |         |
| LAT 36.884444                                                                                                                                                              | _ L                             | ONC                                      | j -79.                                         | 12822                                     |                                                                                                                                                                                                                                            | RIVER BAS                                                                                                                                                                               | SIN Ban                              | iste                                               | r                                               |                                       |                                          |                                                                             |                                          |                                  |                                |                            |         |
| STORET#                                                                                                                                                                    |                                 |                                          |                                                |                                           |                                                                                                                                                                                                                                            | AGENCY V                                                                                                                                                                                | ADEQ                                 |                                                    |                                                 |                                       |                                          |                                                                             |                                          |                                  |                                |                            |         |
| INVESTIGATORS S                                                                                                                                                            | K, VI                           | M                                        |                                                |                                           |                                                                                                                                                                                                                                            | •                                                                                                                                                                                       |                                      |                                                    |                                                 | Ι                                     | TO.                                      | NUMBER                                                                      |                                          |                                  |                                |                            |         |
| FORM COMPLETED                                                                                                                                                             | ) BY                            | S                                        | K                                              |                                           |                                                                                                                                                                                                                                            | DATE TIME 8/19/                                                                                                                                                                         |                                      |                                                    |                                                 | F                                     | EAS                                      | SON FOR SURVEY<br>B                                                         | aselir                                   | ne A                             | sse                            | ssm                        | ent     |
| HABITAT TYPES                                                                                                                                                              |                                 | Cob                                      | ble                                            | -                                         | %                                                                                                                                                                                                                                          | tage of each habitat Snags% phytes%                                                                                                                                                     | ΪŪV                                  | eget                                               | ated ]                                          | Banl                                  |                                          | %                                                                           | %                                        |                                  |                                |                            |         |
| SAMPLE                                                                                                                                                                     | G                               | ear                                      | used                                           |                                           | D-fr                                                                                                                                                                                                                                       | ame kick-net                                                                                                                                                                            |                                      |                                                    |                                                 |                                       |                                          |                                                                             |                                          |                                  |                                |                            |         |
| COLLECTION                                                                                                                                                                 | COLLECTION How were the sample  |                                          |                                                |                                           |                                                                                                                                                                                                                                            |                                                                                                                                                                                         |                                      | ~                                                  |                                                 | fron                                  | hor                                      | k from box                                                                  | .+                                       |                                  |                                |                            |         |
|                                                                                                                                                                            |                                 |                                          |                                                |                                           |                                                                                                                                                                                                                                            |                                                                                                                                                                                         | wadin                                |                                                    | _                                               |                                       |                                          |                                                                             | ıı                                       |                                  |                                |                            |         |
|                                                                                                                                                                            | ▮⊑                              | Cob                                      | ble_                                           |                                           |                                                                                                                                                                                                                                            | r of jabs/kicks taken Snags pphytes                                                                                                                                                     | $\square V$                          | eget                                               |                                                 | Banl                                  |                                          | Sand                                                                        |                                          |                                  |                                |                            |         |
| GENERAL                                                                                                                                                                    | T,                              | 20                                       | de                                             | en.                                       | wa                                                                                                                                                                                                                                         | iter and almo                                                                                                                                                                           | et all                               | 92                                                 | nd                                              | çi                                    | t c                                      | treamhed                                                                    |                                          |                                  |                                |                            |         |
| COMMENTS                                                                                                                                                                   | ▮ '`                            | 50                                       | uc                                             | СÞ                                        | VVC                                                                                                                                                                                                                                        | itor and aimo                                                                                                                                                                           | ot an                                | 36                                                 | iiiu                                            | 31                                    | ·                                        | ircambed.                                                                   |                                          |                                  |                                |                            |         |
|                                                                                                                                                                            |                                 |                                          |                                                |                                           |                                                                                                                                                                                                                                            |                                                                                                                                                                                         |                                      |                                                    |                                                 |                                       |                                          |                                                                             |                                          |                                  |                                |                            |         |
|                                                                                                                                                                            |                                 |                                          |                                                |                                           |                                                                                                                                                                                                                                            |                                                                                                                                                                                         |                                      |                                                    |                                                 |                                       |                                          |                                                                             |                                          |                                  |                                |                            |         |
| QUALITATIVE I                                                                                                                                                              |                                 |                                          |                                                |                                           |                                                                                                                                                                                                                                            |                                                                                                                                                                                         | ved, 1                               | = I                                                | Rare                                            | , 2                                   | = C                                      | ommon, 3= Abun                                                              | dant,                                    | 4 =                              | =                              |                            |         |
| QUALITATIVE I Indicate estimated Dominant  Periphyton Filamentous Algae                                                                                                    | l abı                           |                                          |                                                |                                           | 0                                                                                                                                                                                                                                          |                                                                                                                                                                                         |                                      | Sliı                                               | nes                                             |                                       |                                          | ommon, 3= Abundates                                                         | 0                                        | 4 = 1<br>1<br>1                  | 2                              | 3 3                        |         |
| Indicate estimated Dominant  Periphyton                                                                                                                                    | l abı                           |                                          |                                                |                                           | 0<br>0                                                                                                                                                                                                                                     | Absent/Not Obser                                                                                                                                                                        |                                      | Sliı                                               | nes<br>croii                                    |                                       |                                          | ·                                                                           | 0 0                                      | 1                                | 2 2                            |                            |         |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated                                                                                                 | ATI(                            | ONS                                      | S OI                                           | F M                                       | 0<br>0<br>0<br>0<br>ACI<br>0 = 0                                                                                                                                                                                                           | 1 2 3 4<br>1 2 3 4<br>1 2 3 4<br>1 2 3 4<br>ROBENTHOS<br>Absent/Not Observanisms), 3= Abundanisms), 3= Abundanisms                                                                      | rved, dant (x                        | Slin<br>Ma<br>Fisi<br>1 = 1                        | nes<br>croin<br>n                               | e (1-                                 | tebr                                     | rganisms), 2 = Co<br>, 4 = Dominant (>                                      | 0<br>0<br>0                              | 1<br>1<br>1<br>m (3              | 2<br>2<br>2<br>2               | 3<br>3                     | 4       |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated                                                                                                 | ATIO O                          | ONS<br>und                               | S OI ance                                      | F M e:                                    | 0<br>0<br>0<br>0<br>ACI<br>0<br>orga                                                                                                                                                                                                       | Absent/Not Obser  1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obser anisms), 3= Abund                                                                                                  | rved, adant (2                       | Slin<br>Ma<br>Fisi<br>1 = 1                        | mes<br>croin<br>1<br>Rare<br>orga               | e (1-                                 | -3 or ms)                                | rganisms), 2 = Coo<br>, 4 = Dominant (>                                     | 0<br>0<br>0<br>0                         | 1<br>1<br>1<br>1<br>m (3<br>rgan | 2<br>2<br>2<br>2<br>-9<br>nism | 3<br>3                     | 4 4     |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa                                                                              | AATIO O O                       | ONS<br>und                               | S OI ance                                      | 3<br>3                                    | 0<br>0<br>0<br>0<br>ACI<br>0<br>0<br>orga                                                                                                                                                                                                  | Absent/Not Obser  1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obser anisms), 3= Abund Anisoptera Zygoptera                                                                     | rved, dant (2                        | Slin Ma Fisl  1 = 1 1 1                            | Rarcorga                                        | e (1-3)                               | -3 or ms)                                | rganisms), 2 = Con<br>, 4 = Dominant (><br>Chironomidae<br>Ephemeroptera    | 0<br>0<br>0<br>0<br>50 or                | 1<br>1<br>1<br>1<br>1<br>1       | 2<br>2<br>2<br>2<br>-9<br>nism | 3<br>3<br>3<br>3           | 4 4 4   |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes                                                              | ATIO<br>0<br>0                  | ONS<br>und                               | S OI<br>ance                                   | 3<br>3<br>3<br>3                          | 0<br>0<br>0<br>0<br><b>ACI</b><br>0 = 0<br>orga                                                                                                                                                                                            | 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obsertanisms), 3= Abundarisms, 3= Abundarisms Hemiptera                                                                            | 0<br>0<br>0                          | Slin Ma Fisi  1 = 1 > 10                           | Rarcorga  2 2 2                                 | 3<br>3<br>3                           | -3 or ms)                                | rganisms), 2 = Cor, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br><b>mmoi</b><br>50 oi | 1<br>1<br>1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria                                                  | 0<br>0<br>0<br>0                | ONS<br>und<br>1<br>1<br>1<br>1           | 2<br>2<br>2<br>2                               | 3<br>3<br>3<br>3                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                         | 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obsertanisms), 3= Abundanisms), 3= Abundanisms Coleoptera                                                                          | 0<br>0<br>0<br>0                     | Slin Ma Fis  1 = 1 1 1 1 1 1                       | Rare orga                                       | 3<br>3<br>3<br>3                      | 4<br>4<br>4<br>4                         | rganisms), 2 = Con<br>, 4 = Dominant (><br>Chironomidae<br>Ephemeroptera    | 0<br>0<br>0<br>0<br>50 or                | 1<br>1<br>1<br>1<br>1<br>1       | 2<br>2<br>2<br>2<br>-9<br>nism | 3<br>3<br>3<br>3           | 4 4 4 4 |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea                                        | 0<br>0<br>0<br>0<br>0           | ONS<br>und                               | 2<br>2<br>2<br>2<br>2<br>2                     | 3<br>3<br>3<br>3<br>3<br>3                | 0<br>0<br>0<br>0<br><b>ACI</b> 0 = orga                                                                                                                                                                                                    | Absent/Not Observing  1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observanisms), 3= Abund  Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera                               | 0<br>0<br>0<br>0<br>0                | Slin Ma Fisl  1 = 1 - 10 - 1                       | Rarcorga  2 2 2 2 2 2                           | 3<br>3<br>3<br>3<br>3                 | -3 or ms) 4 4 4 4 4                      | rganisms), 2 = Cor, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br><b>mmoi</b><br>50 oi | 1<br>1<br>1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta                            | 0<br>0<br>0<br>0<br>0           | ONS<br>und<br>1<br>1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2<br>2                | 3<br>3<br>3<br>3<br>3<br>3                | 0<br>0<br>0<br>0<br>0<br>ACI<br>0<br>0<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                  | 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obser anisms), 3= Abund Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera Sialidae                                     | 0<br>0<br>0<br>0<br>0<br>0           | Slin Ma Fiss  1 = 1 1 1 1 1 1 1 1 1                | Rarcorga  2 2 2 2 2 2 2                         | 3<br>3<br>3<br>3<br>3<br>3            | -3 or ms) 4 4 4 4 4 4                    | rganisms), 2 = Cor, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br><b>mmoi</b><br>50 oi | 1<br>1<br>1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda                    | 0<br>0<br>0<br>0<br>0<br>0      | ONS<br>und                               | 2<br>2<br>2<br>2<br>2<br>2<br>2                | 3<br>3<br>3<br>3<br>3<br>3<br>3           | 0<br>0<br>0<br>0<br>ACI<br>0<br>e<br>orga<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                | 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obseranisms), 3= Abund Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera Sialidae Corydalidae                          | 0<br>0<br>0<br>0<br>0<br>0           | Slin Ma<br>Fisi<br>1 = :>10                        | Rarcorga  2 2 2 2 2 2 2 2                       | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | -3 or 3 or | rganisms), 2 = Cor, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br><b>mmoi</b><br>50 oi | 1<br>1<br>1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda          | 0<br>0<br>0<br>0<br>0<br>0      | ONS<br>und<br>1<br>1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 0<br>0<br>0<br>0<br><b>ACI</b><br><b>a</b><br><b>b</b><br><b>c</b><br><b>o</b><br><b>r</b><br><b>g</b><br><b>s</b><br><b>d</b><br><b>d</b><br><b>d</b><br><b>d</b><br><b>d</b><br><b>d</b><br><b>d</b><br><b>d</b><br><b>d</b><br><b>d</b> | 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obsertanisms), 3= Abundanisms), 3= Abundanisms Coleoptera Lepidoptera Lepidoptera Sialidae Corydalidae Tipulidae                   | 0<br>0<br>0<br>0<br>0<br>0           | Slin Ma Fiss  1 = 1 1 1 1 1 1 1 1 1                | mes croin 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | -3 or ms) 4 4 4 4 4 4                    | rganisms), 2 = Cor, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br><b>mmoi</b><br>50 oi | 1<br>1<br>1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda Decapoda | 0<br>0<br>0<br>0<br>0<br>0      | ONS<br>und<br>1<br>1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2<br>2                | 3<br>3<br>3<br>3<br>3<br>3<br>3           | 0<br>0<br>0<br>0<br>ACI<br>0<br>e<br>orga<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                | Absent/Not Observation  1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Observation Anisoptera Zygoptera Hemiptera Coleoptera Lepidoptera Sialidae Corydalidae Tipulidae Empididae | 0<br>0<br>0<br>0<br>0<br>0<br>0      | Slin Ma Fis  1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Rarcorga  2 2 2 2 2 2 2 2                       | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | -3 ooms) 4 4 4 4 4 4 4 4                 | rganisms), 2 = Cor, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br><b>mmoi</b><br>50 oi | 1<br>1<br>1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4   |
| Periphyton Filamentous Algae Macrophytes  FIELD OBSERVA Indicate estimated  Porifera Hydrozoa Platyhelminthes Turbellaria Hirudinea Oligochaeta Isopoda Amphipoda          | 0<br>0<br>0<br>0<br>0<br>0<br>0 | ONS<br>und<br>1<br>1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>0<br><b>ACI</b><br>0 = <b>org</b><br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                          | 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ROBENTHOS Absent/Not Obsertanisms), 3= Abundanisms), 3= Abundanisms Coleoptera Lepidoptera Lepidoptera Sialidae Corydalidae Tipulidae                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Slin Ma Fis  1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | mes croin 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4    | rganisms), 2 = Cor, 4 = Dominant (>  Chironomidae Ephemeroptera Trichoptera | 0<br>0<br>0<br>0<br><b>mmoi</b><br>50 oi | 1<br>1<br>1<br>1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>nism       | 3<br>3<br>3<br>3<br>3<br>3 | 4 4 4 4 |

#### WOLMAN PEBBLE COUNT FORM

Stream ID: S-Q3

Basin: Banister

County: Pittsylvania
Stream Name: Pole Bridge Branch
HUC Code: 03010105
Survey Date: 8/19/2021 Surveyors: SK, VM Type: Representative

|             |             |             | LE COUNT |                   |         |        |       |
|-------------|-------------|-------------|----------|-------------------|---------|--------|-------|
| Inches      | PARTICLE    | Millimeters |          | Particle<br>Count | Total # | Item % | % Cur |
|             | Silt/Clay   | < .062      | S/C      | <b>A</b>          | 20      | 20.00  | 20.00 |
|             | Very Fine   | .062125     |          | <b>^</b>          |         | 0.00   | 20.00 |
|             | Fine        | .12525      |          | <b>*</b>          |         | 0.00   | 20.00 |
|             | Medium      | .255        | SAND     | <b>^</b>          |         | 0.00   | 20.00 |
|             | Coarse      | .50-1.0     |          | <b>^</b>          |         | 0.00   | 20.00 |
| .0408       | Very Coarse | 1.0-2       |          | <b>A</b>          | 75      | 75.00  | 95.00 |
| .0816       | Very Fine   | 2 -4        |          | <b>A</b>          |         | 0.00   | 95.00 |
| .1622       | Fine        | 4 -5.7      |          | <b>A</b>          |         | 0.00   | 95.00 |
| .2231       | Fine        | 5.7 - 8     |          | <b>A</b>          |         | 0.00   | 95.00 |
| .3144       | Medium      | 8 -11.3     |          | <b>A</b>          |         | 0.00   | 95.00 |
| .4463       | Medium      | 11.3 - 16   | GRAVEL   | <b>A</b>          |         | 0.00   | 95.00 |
| .6389       | Coarse      | 16 -22.6    |          | <b>^</b>          | 1       | 1.00   | 96.00 |
| .89 - 1.26  | Coarse      | 22.6 - 32   |          | <b>^</b>          | 1       | 1.00   | 97.00 |
| 1.26 - 1.77 | Vry Coarse  | 32 - 45     |          | <b>^</b>          |         | 0.00   | 97.00 |
| 1.77 -2.5   | Vry Coarse  | 45 - 64     |          | <b>^</b>          |         | 0.00   | 97.00 |
| 2.5 - 3.5   | Small       | 64 - 90     |          | <b>^</b>          | 3       | 3.00   | 100.0 |
| 3.5 - 5.0   | Small       | 90 - 128    |          | <b>^</b>          |         | 0.00   | 100.0 |
| 5.0 - 7.1   | Large       | 128 - 180   | COBBLE   | <b>^</b>          |         | 0.00   | 100.0 |
| 7.1 - 10.1  | Large       | 180 - 256   | 7        | <b>A</b>          |         | 0.00   | 100.0 |
| 10.1 - 14.3 | Small       | 256 - 362   |          | <b>A</b>          |         | 0.00   | 100.0 |
| 14.3 - 20   | Small       | 362 - 512   | 7        | <b>A</b>          |         | 0.00   | 100.0 |
| 20 - 40     | Medium      | 512 - 1024  | BOULDER  | <b>A</b>          |         | 0.00   | 100.0 |
| 40 - 80     | Large       | 1024 -2048  | 7        | <b>A</b>          |         | 0.00   | 100.0 |
| 80 - 160    | Vry Large   | 2048 -4096  | 7        | <b>A</b>          |         | 0.00   | 100.0 |
|             | Bedrock     |             | BDRK     | <b>A</b>          |         | 0.00   | 100.0 |
|             |             |             |          | Totals:           | 100     |        |       |

#### RIVERMORPH PARTICLE SUMMARY

Pole Bridge Branch S-Q3 Representative 08/19/2021

River Name: Reach Name: Sample Name: Survey Date:

| Size (mm)                                                                                                                                                                                                                                                                                                                       | TOT #                                                                                                   | ITEM %                                                                                                                                                                 | CUM %                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - 0.062<br>0.062 - 0.125<br>0.125 - 0.25<br>0.25 - 0.50<br>0.50 - 1.0<br>1.0 - 2.0<br>2.0 - 4.0<br>4.0 - 5.7<br>5.7 - 8.0<br>8.0 - 11.3<br>11.3 - 16.0<br>16.0 - 22.6<br>22.6 - 32.0<br>32 - 45<br>45 - 64<br>64 - 90<br>90 - 128<br>128 - 180<br>180 - 256<br>256 - 362<br>362 - 512<br>512 - 1024<br>1024 - 2048<br>Bedrock | 20<br>0<br>0<br>0<br>0<br>75<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>3<br>0<br>0<br>0<br>0<br>0 | 20.00<br>0.00<br>0.00<br>0.00<br>0.00<br>75.00<br>0.00<br>0.00<br>0.00<br>0.00<br>1.00<br>1.00<br>1.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 20.00<br>20.00<br>20.00<br>20.00<br>95.00<br>95.00<br>95.00<br>95.00<br>95.00<br>96.00<br>97.00<br>97.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00 |
| D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)                                                                                                                                                                                                     | 0.05<br>1.2<br>1.4<br>1.85<br>2<br>90<br>20<br>75<br>2<br>3<br>0                                        |                                                                                                                                                                        |                                                                                                                                                                                |

Total Particles = 100.

#### **Stream Assessment Form (Form 1)** Unified Stream Methodology for use in Virginia For use in wadeable channels classified as intermittent or perennial Cowardin **Impact Impact Project # Project Name (Applicant)** HUC SAR# Locality **Date** Length **Factor** Class. **Mountain Valley Pipeline (Mountain S-Q3** 22865.06 **Pittsylvania** 8/19/21 **50** R3 or R4 03010105 **Valley Pipeline, LLC)** Name(s) of Evaluator(s) Stream Name and Information SAR Length SK, VM 50 Pole Bridge Branch 1. Channel Condition: Assess the cross-section of the stream and prevailing condition (erosion, aggradation) **Conditional Category Suboptimal** Severe Marginal **Optimal** Poor Deeply incised (or excavated), Very little incision or active erosion; 80-Slightly incised, few areas of active Often incised, but less than Severe or Overwidened/incised. Vertically / 100% stable banks. Vegetative surface vertical/lateral instability. Severe erosion or unprotected banks. Majority Poor. Banks more stable than Severe laterally unstable. Likely to widen Channel protection or natural rock, prominent of banks are stable (60-80%). further. Majority of both banks are near incision, flow contained within the banks. or Poor due to lower bank slopes. (80-100%). AND/OR Stable point bars / Vegetative protection or natural rock vertical. Erosion present on 60-80% of Streambed below average rooting depth, Erosion may be present on 40-60% of **Condition** bankfull benches are present. Access prominent (60-80%) AND/OR majority of banks vertical/undercut. both banks. Vegetative protection on banks. Vegetative protection present to their original floodplain or fully Depositional features contribute to 40-60% of banks. Streambanks may be on 20-40% of banks, and is insufficient Vegetative protection present on less developed wide bankfull benches. Midstability. The bankfull and low flow vertical or undercut. AND/OR to prevent erosion. AND/OR 60-80% of than 20% of banks, is not preventing channels are well defined. Stream likely channel bars and transverse bars few. 40-60% Sediment may be temporary / the stream is covered by sediment. erosion. Obvious bank sloughing Transient sediment deposition covers has access to bankfull benches,or present. Erosion/raw banks on 80-100% transient, contribute instability. Sediment is temporary / transient in less than 10% of bottom. nature, and contributing to instability. newly developed floodplains along Deposition that contribute to stability, AND/OR Aggrading channel. Greater AND/OR V-shaped channels have may be forming/present. AND/OR Vthan 80% of stream bed is covered by portions of the reach. Transient sediment covers 10-40% of the stream shaped channels have vegetative deposition, contributing to instability. vegetative protection is present on > protection on > 40% of the banks and 40% of the banks and stable sediment Multiple thread channels and/or bottom. depositional features which contribute deposition is absent. subterranean flow. CI to stability. 2.4 2 1.6 2.40 3 Scores NOTES>> 2. RIPARIAN BUFFERS: Assess both bank's 100 foot riparian areas along the entire SAR. (rough measurements of length & width may be acceptable) NOTES>> **Conditional Category Optimal Suboptimal Marginal Poor** Low Marginal: High Poor: Lawns Non-maintained, mowed, and High Suboptimal: Low Suboptimal: **High Marginal:** dense herbaceous maintained areas. **Low Poor:** Riparian areas with Riparian areas with Non-maintained, vegetation, ripariar nurseries; no-till Impervious tree stratum (dbh > tree stratum (dbh > areas lacking shrub dense herbaceous cropland; actively surfaces, mine 3 inches) present, 3 inches) present, Tree stratum (dbh > 3 inches) present vegetation with and tree stratum, grazed pasture, spoil lands, Riparian with 30% to 60% with 30% to 60% with > 60% tree canopy cover. either a shrub layer hay production, sparsely vegetated denuded surfaces. tree canopy cover tree canopy cover **Buffers** Wetlands located within the riparian or a tree layer (dbh ponds, open water non-maintained row crops, active and containing both and a maintained areas. > 3 inches) If present, tree feed lots, trails, or area, recently herbaceous and nderstory. Recen present, with <30% stratum (dbh >3 seeded and other comparable cutover (dense shrub layers or a inches) present, stabilized, or other conditions. tree canopy cover. non-maintained vegetation). with <30% tree comparable understory. canopy cover with condition. maintained understory. High High High Low Low Low 1.5 1.2 1.1 0.6 0.5 0.85 0.75 **Scores** 1. Delineate riparian areas along each stream bank into Condition Categories and Condition Scores using the descriptors. Ensure the sums of % Riparian 2. Determine square footage for each by measuring or estimating length and width. Calculators are provided for you below. 3. Enter the % Riparian Area and Score for each riparian category in the blocks below. Blocks equal 100 100% 100% % Riparian Area> **Right Bank** 0.85 Score > CI= (Sum % RA \* Scores\*0.01)/2 100% 100% CI % Riparian Area> Rt Bank CI > 0.85 Left Bank 0.85 0.85 Lt Bank CI > 0.85 Score > 3. INSTREAM HABITAT: Varied substrate sizes, water velocity and depths; woody and leafy debris; stable substrate; low embededness; shade; undercut banks; root mats; SAV; riffle/pool complexes, stable features. NOTES>> **Conditional Category Optimal** Suboptimal **Marginal Poor** Instream Habitat/ Stable habitat elements are typically Stable habitat elements are typically Habitat elements listed above are **Available** Habitat elements are typically present | present in 30-50% of the reach and are | present in 10-30% of the reach and are lacking or are unstable. Habitat in greater than 50% of the reach. adequate for maintenance of Cover adequate for maintenance of elements are typically present in less than 10% of the reach. populations. populations. **Stream Gradient** CI

Scores

1.5

0.9

0.5

1.2

**High / Low** 

1.50

|           | Stream Impact Assessment Form Page 2                     |              |                    |          |         |      |                  |                  |  |  |  |  |
|-----------|----------------------------------------------------------|--------------|--------------------|----------|---------|------|------------------|------------------|--|--|--|--|
| Project # | Project Name (Applicant)                                 | Locality     | Cowardin<br>Class. | HUC      | Date    | SAR# | Impact<br>Length | Impact<br>Factor |  |  |  |  |
| 22865.06  | Mountain Valley Pipeline (Mountain Valley Pipeline, LLC) | Pittsylvania | R3 or R4           | 03010105 | 8/19/21 | S-Q3 | 50               | 1                |  |  |  |  |
|           |                                                          |              |                    |          |         |      |                  |                  |  |  |  |  |

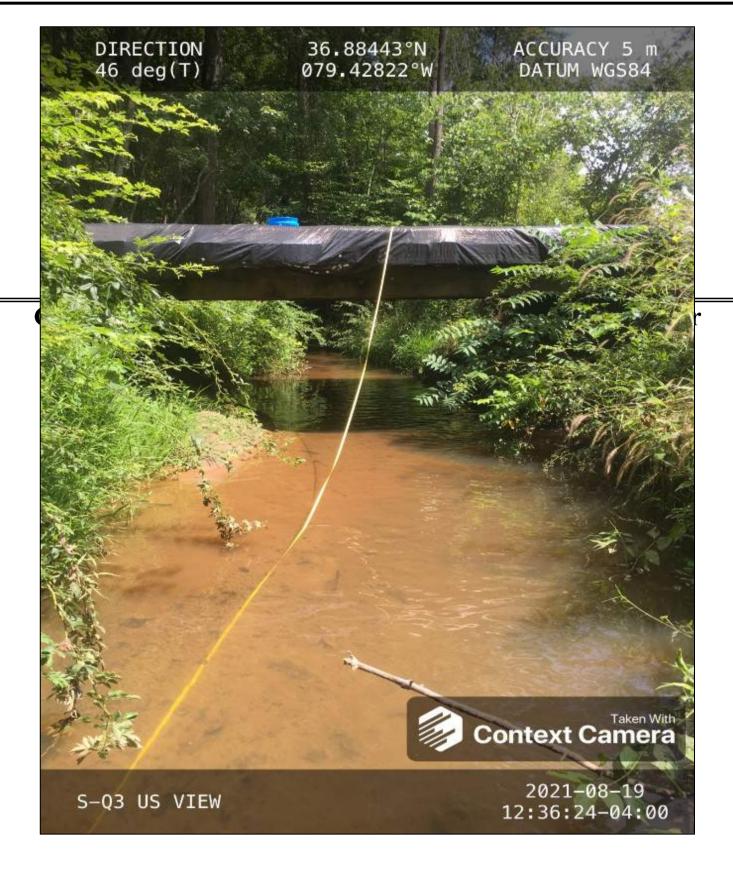
4. CHANNEL ALTERATION: Stream crossings, riprap, concrete, gabions, or concrete blocks, straightening of channel, channelization, embankments, spoil piles, constrictions, livestock

|    |                  | NOTES>>                                                                                                        |             |       |                                                                                       |                                                                                                                                                                                              |        |  |      |
|----|------------------|----------------------------------------------------------------------------------------------------------------|-------------|-------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|------|
|    |                  | Negligible                                                                                                     | Mi          | Minor |                                                                                       | erate                                                                                                                                                                                        | Severe |  |      |
|    | annel<br>eration | Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized. | the channel |       | is disrupted by any of the channel alterations listed in the parameter guidelines. If | 60 - 80% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered. |        |  | CI   |
| So | cores            | 1.5                                                                                                            | 1.3         | 1.1   | 0.9                                                                                   | 0.7                                                                                                                                                                                          | 0.5    |  | 1.50 |

REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH

NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

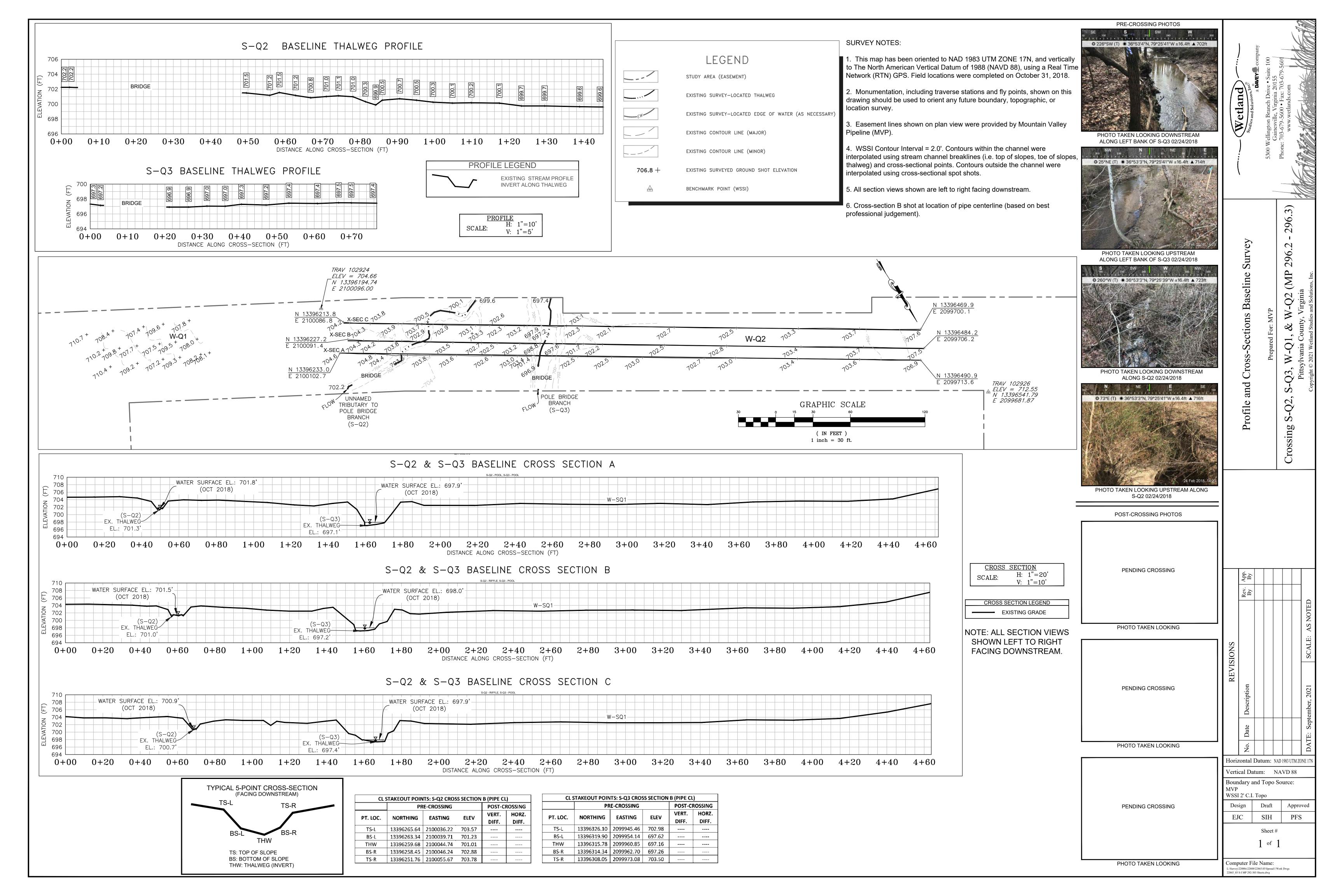
THE REACH CONDITION INDEX (RCI) >> 1.25


RCI= (Sum of all Cl's)/5, except if stream is ephemeral RCI = (Riparian Cl/2)

COMPENSATION REQUIREMENT (CR) >> 63

 $CR = RCI X L_I X IF$ 

## **INSERT PHOTOS:**


(WSSI Photo Location)



CAPTION. Assessment is limited to areas within the temporary ROW.

## DESCRIBE PROPOSED IMPACT:

PROVIDED UNDER SEPARATE COVER

