Baseline Assessment – Stream Attributes

Reach S-RR15 (Timber Mat Crossing) Perennial Spread I Franklin County, Virginia

Data	Included
Photos	✓
SWVM Form	✓
FCI Calculator and HGM Form	N/A – Perennial stream (not shadeable)
RBP Physical Characteristics Form	✓
Water Quality Data	✓
RBP Habitat Form	✓
RBP Benthic Form	✓
Benthic Identification Sheet	✓
Wolman Pebble Count	✓
RiverMorph Data Sheet	✓
USM Form (Virginia Only)	✓
Longitudinal Profile and Cross Sections	✓

Location, Orientation, Photographer Initials: Standing on RB looking downstream along the LOD looking N, AO

Location, Orientation, Photographer Initials: Standing on LB looking downstream along the LOD looking NW, AO

Location, Orientation, Photographer Initials: Standing on RB looking upstream along the LOD looking S, AO

Location, Orientation, Photographer Initials: Standing on LB looking upstream along the LOD looking SW, AO

Location, Orientation, Photographer Initials: Standing on RB looking at LB along pipe centerline looking W, AO

Location, Orientation, Photographer Initials: Standing on LB looking at RB along pipe centerline looking E, AO

Spread I Stream S-RR15 (Timber Mat) Franklin County

Location, Orientation, Photographer Initials: Downstream conditions outside of LOD looking NE, AO

 $L: \c|22000s|22800|22865.06| Admin|05-ENVR| Field\ Data| Spread\ I\ Field\ Forms|S-RR15| Photo\ Doc_BKF10plus_S-RR15. docx| Field\ Forms|S-RR15| Photo\ Doc_BKF10plus_S-RR15| Field\ Forms|S-RR15| Photo\ Doc_BKF10plus_S-RR15| Field\ Forms| Field\ Forms| Field\ Forms| Field\ Forms| Field\ Forms| Field\ Field\ Forms| Field\ Field\$

USACE FILE NO./ Project Name: (v2.1, Sept 2015)		Mountai	n Valley Pipeline	IMPACT COORDINATE (in Decimal Degrees)	S: Lat.	37.069542	Lon.	-79.933892	WEATHER:	Sunny	DATE:	August 2	27, 2021
IMPACT STREAM/SITE ID (watershed size (acreage).			S-I	RR15		MITIGATION STREAM CLA (watershed size (a	ASS./SITE ID AND icreage), unaltered or im				Comments:		
STREAM IMPACT LENGTH:	20	FORM OF MITIGATION:	RESTORATION (Levels I-III)	MIT COORDINATES: (in Decimal Degrees)	Lat.		Lon.		PRECIPITATION PAST 48 HRS:	None	Mitigation Length:		
Column No. 1- Impact Existing	g Condition (Deb	bit)	Column No. 2- Mitigation Existing C	Condition - Baseline (Credit)		Column No. 3- Mitigati Post Comp	on Projected at Five pletion (Credit)	Years	Column No. 4- Mitigation Proje Post Completion (Column No. 5- Mitigation Project	ed at Maturity (C	Credit)
Stream Classification:	Pere	nnial	Stream Classification:			Stream Classification:		0	Stream Classification:	0	Stream Classification:	•	0
Percent Stream Channel SI	lope	1.7	Percent Stream Channel SI	ope		Percent Stream Chann	nel Slope	0	Percent Stream Channel Sle	ope 0	Percent Stream Channel S	lope	0
HGM Score (attach d	lata forms):		HGM Score (attach	data forms):		HGM Score (at	ttach data forms):		HGM Score (attach da	ata forms):	HGM Score (attach d	ata forms):	
		Average		Average				Average		Average			Average
Hydrology Biogeochemical Cycling Habitat		0	Hydrology Biogeochemical Cycling Habitat	0		Hydrology Biogeochemical Cycling Habitat		0	Hydrology Biogeochemical Cycling Habitat	0	Hydrology Biogeochemical Cycling Habitat		0
PART I - Physical, Chemical and	Biological Indic	cators	PART I - Physical, Chemical an	d Biological Indicators		PART I - Physical, Chemi	cal and Biological Ir	dicators	PART I - Physical, Chemical and	Biological Indicators	PART I - Physical, Chemical and	Biological Indic	ators
	Points Scale Range	Site Score		Points Scale Range Site Score			Points Scale Rang	s Site Score		Points Scale Range Site Score		Points Scale Range	Site Score
PHYSICAL INDICATOR (Applies to all streams	s classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)		PHYSICAL INDICATOR (Applies to all st	treams classifications)		PHYSICAL INDICATOR (Applies to all streams	classifications)	PHYSICAL INDICATOR (Applies to all streams	s classifications)	
USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover	1	13	USEPA RBP (Low Gradient Data Sheet)			USEPA RBP (High Gradient Data She	eet)		USEPA RBP (High Gradient Data Sheet)		USEPA RBP (High Gradient Data Sheet) 1. Epifaunal Substrate/Available Cover		
Epitaunal Substrate/Available Cover Embeddedness	0-20	9	Epifaunal Substrate/Available Cover Pool Substrate Characterization	0-20	_	Epifaunal Substrate/Available Cover Embeddedness	0-20		Epifaunal Substrate/Available Cover Embeddedness	0-20	Epitaunal Substrate/Available Cover Embeddedness	0-20	
Velocity/ Depth Regime	0-20	7	3. Pool Variability	0-20		Velocity/ Depth Regime	0-20		Embeddedness Velocity/ Depth Regime	0-20	Velocity/ Depth Regime	0-20	
Velocity Depart regime Sediment Deposition	0-20	7	Sediment Deposition	0-20	_	Velocity Departing 4. Sediment Deposition	0-20		Velocity Departregime Sediment Deposition	0-20	Sediment Deposition	0-20	
5. Channel Flow Status	0-20 0.1	19	5. Channel Flow Status	0-20		5. Channel Flow Status	0-20		5. Channel Flow Status	0-20 0.1	5. Channel Flow Status	0-20	
6. Channel Alteration	0-20	20	6. Channel Alteration	0-20		6. Channel Alteration	0-20		6. Channel Alteration	0-1	6. Channel Alteration	0-20	
7. Frequency of Riffles (or bends)	0-20	15	7. Channel Sinuosity	0-20		7. Frequency of Riffles (or bends)	0-20		7. Frequency of Riffles (or bends)	0-20	7. Frequency of Riffles (or bends)	0-20	
8. Bank Stability (LB & RB)	0-20	13	8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20		8. Bank Stability (LB & RB)	0-20	8. Bank Stability (LB & RB)	0-20	
Vegetative Protection (LB & RB)	0-20	16	9. Vegetative Protection (LB & RB)	0-20		Vegetative Protection (LB & RB)	0-20		9. Vegetative Protection (LB & RB)	0-20	9. Vegetative Protection (LB & RB)	0-20	
10. Riparian Vegetative Zone Width (LB & RB)	0-20	14	10. Riparian Vegetative Zone Width (LB & RB)	0-20		10. Riparian Vegetative Zone Width (LB & F	RB) 0-20		Riparian Vegetative Zone Width (LB & RB)	0.20	10. Riparian Vegetative Zone Width (LB & RB)	0-20	
Total RBP Score	Suboptimal	133	Total RBP Score	Poor 0		Total RBP Score	Poor	0	Total RBP Score	Poor 0	Total RBP Score	Poor	0
Sub-Total		0.665	Sub-Total	0		Sub-Total	-	0	Sub-Total	0	Sub-Total		0
CHEMICAL INDICATOR (Applies to Intermitter	nt and Perennial Str	reams)	CHEMICAL INDICATOR (Applies to Intermitten	and Perennial Streams)		CHEMICAL INDICATOR (Applies to Inte	rmittent and Perennial S	treams)	CHEMICAL INDICATOR (Applies to Intermitten	it and Perennial Streams)	CHEMICAL INDICATOR (Applies to Intermittee	nt and Perennial Stre	eams)
WVDEP Water Quality Indicators (General Specific Conductivity	0		WVDEP Water Quality Indicators (General) Specific Conductivity			WVDEP Water Quality Indicators (Ge Specific Conductivity	eneral)		WVDEP Water Quality Indicators (General) Specific Conductivity		WVDEP Water Quality Indicators (General Specific Conductivity		
<=99 - 90 points	0-90	46.1	5,555,555	0-90			0-90			0-90		0-90	
pH			pH			pH			pH		ρΗ	-	
6.0-8.0 = 80 points	0-80	6.25		5-90			5-90			5-90		5-90	
DO COCO - GO PONTO			DO			DO			DO		DO		
	10-30	9.26		10-30			10-30			10-30		10-30	
>5.0 = 30 points			Sub-Total			Sub-Total		0	Sub-Total		Sub-Total		
BIOLOGICAL INDICATOR (Applies to Intermit	tent and Decennial 9	Streame)	BIOLOGICAL INDICATOR (Applies to Intermitt	ant and Parannial Streams)		BIOLOGICAL INDICATOR (Applies to	Intermittent and Perer		BIOLOGICAL INDICATOR (Applies to Interm	uittent and Perennial Streams)	BIOLOGICAL INDICATOR (Applies to Intern	nittent and Derenn	nial Streame)
WV Stream Condition Index (WVSCI)	acin and i cicimai (on current	WV Stream Condition Index (WVSCI)	and referring orders)		WV Stream Condition Index (WVSCI)		ina oreans)	WV Stream Condition Index (WVSCI)	intent and referring offeating)	WV Stream Condition Index (WVSCI)	The state of the s	iai oucums)
	0-100 0-1	67.4	WV Stream Condition index (WVSCI)	0-100 0-1		WV Stream Condition Index (WVSCI)	0-100 0-1		WV Stream Condition index (WVSCI)	0-100 0-1	WV Stream Condition index (WVSCI)	0-100 0-1	
Good Sub-Total		0.674	Sub-Total	0		Sub-Total		0	Sub-Total	0	Sub-Total		0
PART II - Index and U	Jnit Score		PART II - Index and	Unit Score		PART II - Inde	x and Unit Score		PART II - Index and U	nit Score	PART II - Index and I	Jnit Score	
Index	Linear Feet	Unit Score	Index	Linear Feet Unit Score		Index	Linear Fee	: Unit Score	Index	Linear Feet Unit Score	Index	Linear Feet	Unit Score
0.780	20	15.5933333	0	0 0		0	0	0	0	0 0	0	0	0

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

STREAM NAME S-RR15	LOCATION Franklin County	
STATION # RIVERMILE	STREAM CLASS Perennial	
LAT <u>37.069542</u> LONG <u>-79.933892</u>	RIVER BASIN Upper Roand	oke
STORET#	AGENCY VADEQ	
INVESTIGATORS AO, MM		
FORM COMPLETED BY AO, MM	DATE 8/27/2021 TIME 9:12 AM	REASON FOR SURVEY Baseline Assessment

WEATHER CONDITIONS	Now Past 24 hours Yes Yes No Air Temperature 24 0 C Other Clear/sunny Has there been a heavy rain in the last 7 days? Yes Other
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph)
	COMING FORES LOSED LOSANS DENSE LOSES PROPERTY P
STREAM CHARACTERIZATION	Stream Subsystem Stream Type ✓ Perennial □Intermittent □Tidal □Coldwater ✓ Warmwater
	Stream Origin Glacial Non-glacial montane Swamp and bog Catchment Area 0.19 km² Mixture of origins Other Other

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

WATERS FEATURI		Predom Fores Field Agric Resid	Pasture Industri	rcial	Local Watershed NPS ☑ No evidence ☐ Son ☐ Obvious sources ☐ Local Watershed Erosi ☑ None ☐ Moderate	ne potential sources
RIPARIA VEGETA (18 meter	TION	Trees	e the dominant type and S ant species present Ligustry	hrubs	_	rbaceous
INSTREA FEATURI		Estimat Samplin Area in Estimat	red Stream Depth 0.1 Velocity 0.3 m	m m² km²	Canopy Cover Partly open □Part High Water Mark ○ Proportion of Reach Re Morphology Types Riffle ③ % Pool ○ % Channelized □Yes Dam Present □Yes	
LARGE V DEBRIS	VOODY	LWD Density	of LWDm	n ² /km ² (LWD/	reach area)	
AQUATION VEGETA		✓ Roote Floati	e the dominant type and demergent RAI	ooted submerge tached Algae	nt □Rootêd floating	Free floating
WATER ((DS, US)	QUALITY	Specific Dissolve pH 625,6 Turbidi				Chemical Other Globs Flecks red
SEDIMEN SUBSTRA		Odors Norm Chem Othen Oils	ical Anaerobic	Petroleum None	Lρoking at stones whic are the undersides blac	Paper fiber Sand Other Fine sediment h are not deeply embedded, k in color?
INC	ORGANIC SUBS	STRATE	COMPONENTS		ORGANIC SUBSTRATE C	OMPONENTS
Substrate		dd up to 1		Substrate	(does not necessarily add Characteristic	
Type	Diamet	ei 	Sampling Reach	Type	Characteristic	Sampling Area
Bedrock	0.50		0	Detritus	sticks, wood, coarse plant materials (CPOM)	10
Boulder	> 256 mm (10")		0	M 1 M 1	11 1 6 .	
Cobble	64-256 mm (2.5 2-64 mm (0.1"-2		5 35	Muck-Mud	black, very fine organic (FPOM)	0
Gravel Sand	2-64 mm (0.1"-2 0.06-2mm (gritt			Marl	grey, shell fragments	
Silt	0.004-0.06 mm	y)	50 6	wiaii	grey, shell magnicitis	0
Clay	< 0.004-0.00 mm (sli	ck)	4	1		
-14J	0.007 111111 (511			1	l	

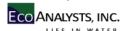
HABITAT ASSESSMENT FIELD DATA SHEET - HG - USE ON ALL STREAMS (FRONT)

STREAM NAME S-RR15	LOCATION Franklin County					
STATION # RIVERMILE	STREAM CLASS Perennial					
LAT <u>37.069542</u> LONG <u>-79.933892</u>	RIVER BASIN Upper Roanoke					
STORET#	AGENCY VADEQ					
INVESTIGATORS AO, MM						
FORM COMPLETED BY AO, MM	DATE 8/27/2021 TIME 9:12 AM PM REASON FOR SURVEY Baseline Assessment					

	Habitat		Condition	Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.			
	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.			
ted in	SCORE 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).			
ıram	SCORE 7	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
P ₂	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
	SCORE 7	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
	SCORE 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			

Notes:

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)


	Habitat		Condition	ı Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor			
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.			
	SCORE 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.			
ampl	SCORE 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.			
e ev	SCORE 6	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
to b	SCORE 7	Right Bank 10 9	8 7 6	5 4 3	2 1 0			
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.			
	SCORE 8	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
	SCORE 8	Right Bank 10 9	8 7 6	5 4 3	2 1 0			
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.			
	SCORE 7	Left Bank 10 9	8 7 6	5 4 3	2 1 0			
	SCORE 7	Right Bank 10 9	8 7 6	5 4 3	2 1 0			

Total Score 133 Notes:

BENTHIC MACROINVERTEBRATE FIELD DATA SHEET

STREAM NAME S-F	RR15	,					LOC	CATION	Frank	lin C	ount	y							
STATION #	R	IVE	RMI	LE_			STR	EAM C	LASS	Pere	nnia	1							
LAT 37.069542	_ L	ONC	j -79.	933892	2		RIV	ER BAS	SIN U	per	Roa	noke	;						
STORET#							AGF	ENCY V	ADEQ										
INVESTIGATORS A	O, M	М										I	LOT	NUMBER					
FORM COMPLETE	O BY	Α	Ο,	, [ΛN	/	DAT TIM					I	REAS	SON FOR SURVEY Ba	aselir	ne A	sse	ssm	ent
HABITAT TYPES	✓	Cob	ble 1	_	%	tage of ✓Sna phytes_	ags 5	habitat	type pr ☑V	eget	ated	Bani	ks_ ⁷⁵ _	%	_%				
SAMPLE	G	ear	used		D-fr	ame 🗸	kick	-net			ther								
COLLECTION	.,			41		1 11	4 - 36	, г	7 a:		_	16	n bar	ık 🔲 from boa	4				
	Н	ow v	vere	tne	samp	les coll	ectea	; <u>L</u>	wadin	g	_	Iror	n bar	ik Irom boa	τ				
	✓	Cob	ble 4			r of jab Sna phytes_	ags	s taken	$\square \vee$	eget	oitat ated other	Ban	ks	Sand)	_				
Periphyton Filamentous Algae Macrophytes FIELD OBSERV	d abu	ONS	s Ol	F M	0 = A 0 0 0 ACI $0 = A$	1 2 1 2 1 2 ROBEI	/Not 3 3 3 NTH	Obser 4 4 4 OS	rved,	Slin Ma Fish	nes croi h	nve	rtebr	ommon, 3= Abuno rates rganisms), 2 = Cor	0 0 0	1 1 1	2 2 2	3 3	4 4 4
					org	anisms), 3=	Abun	dant (>10	org	anis	sms)	4 = Dominant (>5)	50 oı	rgar	ism	is)	
Porifera	0	1	2	3	1	Anice	nter		0	1	2	3	1	Chironomidae	0	1	2	3	1
Hydrozoa	0	1	2	3	4	Zygo	_		0	1	2	3	4	Ephemeroptera	0	1	2	3	4
Platyhelminthes	0	1	2	3	4	Hemi	•		0	1	2	3	4	Trichoptera	0	1	2	3	4
Turbellaria	0	1	2	3	4	Coled	_		0	1	2	3	4	Other	0	1	2	3	4
Hirudinea	0	1	2	3	4	Lepic	_		0	1	2	3	4	o iner		•	-	,	•
Oligochaeta	0	1	2	3	4	Sialio	_		0	1	2	3	4						
Isopoda	0	1	2	3	4	Cory		ae	0	1	2	3	4						
Amphipoda	0	1	2	3	4	Tipul			0	1	2	3	4						
Decapoda	0	1	2	3	4	Empi		3	0	1	2	3	4						
Gastropoda	0	1	2	3	4	Simu			0	1	2	3	4						
Bivalvia	0	1	2	3	4	Tabir			0	1	2	3	4						
						Culci	dae		0	1	2	3	4						

Mountain Valley Pipeline Data are not adjusted for subsampling

	Sample ID	
	Collection Date	08-27-2021
ORDER	GENUS/SPECIES	COUNT
Ephemeroptera		1
	Eccoptura xanthenes	1
Plecoptera	Leuctra sp.	14
Trichoptera	Agarodes sp.	5
	Diplectrona sp.	53
	Lepidostoma sp.	6
· ·	Lype diversa	1
Trichoptera	Psilotreta sp.	4
Odonata	Calopteryx sp.	6
	Anchytarsus bicolor	7
·	Ectopria sp.	1
	Helichus sp.	2
	Macronychus glabratus	1
	Oulimnius sp.	4
Diptera-Chironomidae	·	2
Diptera-Chironomidae	· '	
Diptera-Chironomidae	·	1
Diptera-Chironomidae		1
Diptera-Chironomidae Diptera-Chironomidae		32
Diptera-Chironomidae	·	1
Diptera-Chironomidae		13
Diptera-Chironomidae		9
Diptera-Chironomidae		1
Diptera-Chironomidae	·	1
•	Thienemannimyia gr. sp.	11
· ·	Ceratopogoninae	2
Diptera	Dicranota sp.	2
Diptera	Limnophila sp.	3
Diptera	Neoplasta sp.	3
Diptera	Pseudolimnophila sp.	2
Annelida	tubificoid Naididae w/o cap setae	6
Bivalvia	Pisidium sp.	9
Crustacea	Cambarus sp.	2
Other Organisms	Nematoda	4
Other Organisms	Turbellaria	1
	TOTAL	214

Mountain Valley Pipeline WV SCI Metrics

Sample ID Collection Date	
WVSCI Metric Values Total taxa EPT taxa EPT Chironomidae 2 Dominant HBI	22 8 39.7 34.6 59.3 5.03
WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	104.8 61.5 43.2 66.1 63.5 70.0
WVSCI Metric Scores Total taxa EPT taxa % EPT % Chironomidae % 2 Dominant HBI	100.0 61.5 43.2 66.1 63.5 70.0
WVSCI Total Score	67.4

WVSCI Thresholds

Unimpaired = > 68.00 Gray Zone = 60.61 to 68.00 Impaired = <60.61

WOLMAN PEBBLE COUNT FORM

County: Franklin County Stream ID: S-RR15

Stream Name: UNT to Teels Creek

HUC Code: 03010101 Basin: Upper Roanoke

Survey Date: 8/27/2021 Surveyors: AO, MM Type: Representative

T 1	DADTICI E		LE COUNT	D (1.1	700 + 11 //	T: 0/	0/ 0
Inches	PARTICLE	Millimeters		Particle Count	Total #	Item %	% Cun
	Silt/Clay	< .062	S/C	^	11	11.00	11.00
	Very Fine	.062125		•	22	22.00	33.00
	Fine	.12525		•	17	17.00	50.00
	Medium	.255	SAND	•	1	1.00	51.00
	Coarse	.50-1.0		•	5	5.00	56.00
.0408	Very Coarse	1.0-2		4	3	3.00	59.00
.0816	Very Fine	2 -4		•	3	3.00	62.00
.1622	Fine	4 -5.7		4	6	6.00	68.00
.2231	Fine	5.7 - 8		•	2	2.00	70.00
.3144	Medium	8 -11.3		•	4	4.00	74.00
.4463	Medium	11.3 - 16	GRAVEL	•	1	1.00	75.00
.6389	Coarse	16 -22.6		•	3	3.00	78.00
.89 - 1.26	Coarse	22.6 - 32		•	3	3.00	81.00
1.26 - 1.77	Vry Coarse	32 - 45		4	3	3.00	84.00
1.77 -2.5	Vry Coarse	45 - 64		4	8	8.00	92.00
2.5 - 3.5	Small	64 - 90		4	6	6.00	98.00
3.5 - 5.0	Small	90 - 128	COBBLE	4	2	2.00	100.0
5.0 - 7.1	Large	128 - 180		•	0	0.00	100.0
7.1 - 10.1	Large	180 - 256		•	0	0.00	100.0
10.1 - 14.3	Small	256 - 362		4	0	0.00	100.0
14.3 - 20	Small	362 - 512		4	0	0.00	100.0
20 - 40	Medium	512 - 1024	BOULDER	4	0	0.00	100.0
40 - 80	Large	1024 -2048		4	0	0.00	100.0
80 - 160	Vry Large	2048 -4096		•	0	0.00	100.0
	Bedrock		BDRK	4	0	0.00	100.0
				Totals	100		

RIVERMORPH PARTICLE SUMMARY

River Name: UNT to Teels Creek Reach Name: S-RR15 Representative 08/27/2021

Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	11 22 17 1 5 3 6 2 4 1 3 3 8 6 2 0 0 0 0	11.00 22.00 17.00 1.00 5.00 3.00 3.00 6.00 2.00 4.00 1.00 3.00 3.00 3.00 3.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	11.00 33.00 50.00 51.00 56.00 59.00 62.00 68.00 70.00 74.00 75.00 78.00 81.00 84.00 92.00 98.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Cobble (%) Boulder (%) Bedrock (%)	0.08 0.14 0.25 45 77 128 11 48 33 8 0		

Total Particles = 100.

				Unified St	tream Method	lology for use			l)		
Project #	Project Na	ıme (Appl		For use in wadea	Cowardin Class.	ssified as interm	Date	SAR#	Impact Length	Impact Factor	
22865.06	Mountain Valley Valley Pi		`	Franklin County	R3	03010101	8/27/2021	S-RR15	20	1	
Name	Valley Pipeline, LLC) e(s) of Evaluator(s) Stream Name an			tion				Stream Lengt	h		
	AO, MM		Unnamed Tri	butary to Tee	ls Creek				96		
. Channel C	ondition: Assess the	cross-section	on of the stream a								
	Optimal		Suboptimal		Conditional Category Marginal		Poor		Sev	/ere	
Channel Condition	Very little incision or active 100% stable banks. Vegeta protection or natural rock, (80-100%). AND/OR Stable bankfull benches are prese to their original floodplaid developed wide bankfull be channel bars and transvers	tative surface , prominent le point bars / sent. Access ain or fully enches. Mid- rse bars few. sition covers	prominent (60- Depositional feat stability. The ban channels are well de	eted banks. Majority able (60-80%). ion or natural rock -80%) AND/OR ures contribute to ikfull and low flow effined. Stream likely nkfull benches,or	Poor. Banks more or Poor due to Ic Erosion may be pr both banks. Veget 40-60% of banks. S vertical or und 40-60% Sediment transient, contr Deposition that co	less than Severe or stable than Severe wer bank slopes. sesent on 40-60% of tative protection on treambanks may be errut. AND/OR may be temporary / ibute instability. ntribute to stability.	laterally unstable further. Majority of vertical. Erosion pr banks. Vegetative on 20-40% of bank to prevent erosion. the stream is cov. Sediment is temp	esent on 60-80% of protection present s, and is insufficient	Streambed below av majority of banks Vegetative protecti than 20% of banks erosion. Obvious	stability. Severe ned within the banks. verage rooting depth, vertical/undercut. ion present on less s, is not preventing s bank sloughing v banks on 80-100%.	
Saaraa	3		sediment covers 10 bott		shaped channels protection on > 40 depositional featur to sta	resent. AND/OR V- s have vegetative % of the banks and es which contribute ability.	vegetative protect 40% of the banks a	ed channels have ion is present on > and stable sediment is absent.	than 80% of stream deposition, contrib Multiple thread subterran	channels and/or nean flow.	CI
Scores	3		2.	.4	,	2	1	.6	1	'	2.40
			Con	ditional Cate	gory				NOTES>>		
Riparian Buffers	Optimal Tree stratum (dbh > 3 inchwith > 60% tree canopy Wetlands located within thareas.	hes) present, by cover.	Subore High Suboptimal: Riparian areas with	otimal Low Suboptimal:	 	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory.	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	NOTES>>		
•	Tree stratum (dbh > 3 inch with > 60% tree canopy Wetlands located within the areas.	hes) present, by cover.	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shub layers or a non-maintained	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30%	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with < 30% tree canopy cover with maintained understory. Low	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable	NOTES>>		
•	Tree stratum (dbh > 3 inch with > 60% tree canopy Wetlands located within th	hes) present, by cover.	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory.	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation).	Mary High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover.	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh > 3 inches) present, with < 30% tree canopy cover with maintained understory.	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition.	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions.	NOTES>>		
Scores Delineate ripa Determine squ	Tree stratum (dbh > 3 inch with > 60% tree canopy Wetlands located within the areas. 1.5	hes) present, yy cover. the riparian	Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating length	Low Suboptimal: Riparian areas with tree stratum (dbh 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, tralls, or other comparable conditions.	NOTES>>		
Scores Delineate ripa Determine square squa	Tree stratum (dbh > 3 inch with > 60% tree canopy Wetlands located within the areas. 1.5 Trian areas along each struuare footage for each by the area of the are	hes) present, yy cover. the riparian	Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating length	Low Suboptimal: Riparian areas with tree stratum (dbh 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Cale	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5	NOTES>>		
Scores Delineate ripa Determine squ	Tree stratum (dbh > 3 inch with > 60% tree canopy Wetlands located within the areas. 1.5 Trian areas along each struare footage for each by the area and Score for the Riparian Area and Sco	hes) present, yy cover. the riparian tream bank i r measuring of	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating lengtarian category in the season with the containing lengtarian category in the suboptimal cases with the containing lengtarian category in the same as well as the containing lengtarian category in the same as well as the containing lengtarian category in the same as well as the containing lengtarian category in the same as well as the containing lengtarian category in the case which is contained to the containing lengtarian category in the case which is contained to the case which is contained to the containing lengtarian category in the case which is contained to the case which is c	Low Suboptimal: Riparian areas with tree stratum (dbh 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 agories and Cond th and width. Calculate blocks below.	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5			
Scores Delineate ripa Determine squ Enter the % R	Tree stratum (dbh > 3 inch with > 60% tree canopy Wetlands located within the areas. 1.5 Trian areas along each structure footage for each by the area and Score for the score in the sco	hes) present, by cover. the riparian tream bank is measuring of reach ripa 40%	Suboy High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating length arian category in the 30% 0.85	Low Suboptimal: Riparian areas with tree stratum (dbh 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 Low 1.1 Low 2.1 Low 3.1 Low 3.1 Low 4.1 Low 5.1 Low 5.1 Low 5.1 Low 6.1 Low 7.1	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 he sums kiparian qual 100 100%	CI= (Sum % RA * Sc		
Scores Delineate ripa Determine squ Enter the % R	Tree stratum (dbh > 3 inch with > 60% tree canopy Wetlands located within the areas. 1.5 Trian areas along each structure footage for each by the area and Score for the score in the sco	hes) present, by cover. the riparian tream bank is reasuring of reach riparian 40% 0.6	Subol High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating lenguarian category in the 30% 0.85	Low Suboptimal: Riparian areas with tree stratum (dbh 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 Low 1.1 egories and Cond th and width. Calc the blocks below. 20% 0.75	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 tition Scores using culators are provid	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5	CI= (Sum % RA * Sc Rt Bank CI >	0.70	CI
Scores Delineate ripa Determine squ Enter the % R Right Bank Left Bank B. INSTREAM	Tree stratum (dbh > 3 inch with > 60% tree canopy Wetlands located within the areas. 1.5 Trian areas along each structure footage for each by the strain Area and Score for the strain Area and Score for the strain Area and Score > % Riparian Area footage for each by the strain Area and Score for the strain Area footage for each by the strain Area footage fo	tream bank in measuring of or each ripa 40% 0.6	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lengt rian category in the 30% 0.85	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 egories and Cond th and width. Calc are blocks below. 20% 0.75	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dis) y a linches) present, with <30% tree canopy cover. High 0.85 tition Scores using sulators are provide 10% 0.5	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. led for you below.	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks 6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 he sums tiparian qual 100 100%	CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI >	0.70 0.90	CI 0.80
Scores Delineate ripa Determine square ripa Enter the % R Right Bank Left Bank INSTREAM	Tree stratum (dbh > 3 inch with > 60% tree canopy Wetlands located within the areas. 1.5 Trian areas along each structure footage for each by the strain Area and Score for the strain Area and Score for the strain Area and Score > % Riparian Area footage for each by the strain Area and Score for the strain Area footage for each by the strain Area footage fo	tream bank in measuring of or each ripa 40% 0.6	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lengt rian category in the 30% 0.85	Low Suboptimal: Riparian areas with tree stratum (dbh 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 Low 1.1 Low 2.1 Low 1.1 Lo	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dis) y a linches) present, with <30% tree canopy cover. High 0.85 tition Scores using sulators are provide 10% 0.5	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. led for you below.	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks 6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 he sums tiparian qual 100 100%	CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI >	0.70	
Scores 1. Delineate ripa 2. Determine squ 3. Enter the % R Right Bank Left Bank 3. INSTREAM	Tree stratum (dbh > 3 inch with > 60% tree canopy Wetlands located within the areas. 1.5 Trian areas along each structure footage for each by the strain Area and Score for the strain Area and Score for the strain Area and Score > % Riparian Area footage for each by the strain Area and Score for the strain Area footage for each by the strain Area footage fo	tream bank in measuring of or each ripa 40% 0.6	High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 nto Condition Cate or estimating lengt rian category in the 30% 0.85	Low Suboptimal: Riparian areas with tree stratum (dbh 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 Low 1.1 egories and Cond th and width. Calc the blocks below. 20% 0.75 20% 1.5 and depths; woody	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (dbh > 3 inches) present, with <30% tree canopy cover. High 0.85 tition Scores using culators are provid 10% 0.5 10% 0.5	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. led for you below.	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, recently seeded and stabilized, or other comparable condition. High 0.6 Ensure of % F Blocks e	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 he sums tiparian qual 100 100%	CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI > banks; root mats; \$	0.70	
Scores Delineate ripa Determine square the % R Right Bank Left Bank B. INSTREAM	Tree stratum (dbh > 3 inch with > 60% tree canopy Wetlands located within the areas. 1.5 Trian areas along each structure footage for each by the street of the structure of t	tream bank i reasuring v for each ripa 40% 0.6 50% 0.85 ubstrate size	Subop High Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and containing both herbaceous and shrub layers or a non-maintained understory. High 1.2 Into Condition Cate or estimating length arian category in the 30% 0.85 20% 0.6 Is, water velocity a Subop Stable habitat eler present in 30-50% or subop Stable habitat eler present in 30-50%	Low Suboptimal: Riparian areas with tree stratum (dbh > 3 inches) present, with 30% to 60% tree canopy cover and a maintained understory. Recent cutover (dense vegetation). Low 1.1 Low 1.1 egories and Cond th and width. Calc the blocks below. 20% 0.75 20% 1.5 and depths; woody Conditional ptimal ments are typically of the reach and are maintenance of	High Marginal: Non-maintained, dense herbaceous vegetation with either a shrub layer or a tree layer (sh) > 3 inches) present, with <30% tree canopy cover. High 0.85 tition Scores using culators are provide 10% 0.5 10% 0.5 / and leafy debris; al Category Stable habitat ele present in 10-30% adequate for r adequate for r	Low Marginal: Non-maintained, dense herbaceous vegetation, riparian areas lacking shrub and tree stratum, hay production, ponds, open water. If present, tree stratum (dbh >3 inches) present, with <30% tree canopy cover with maintained understory. Low 0.75 the descriptors. led for you below.	High Poor: Lawns, mowed, and maintained areas, nurseries; no-till cropland; actively grazed pasture, sparsely vegetated non-maintained area, re-cently seeded and stabilized, or other comparable condition. High 0.6 Ensure 1 of % F Blocks 6	Low Poor: Impervious surfaces, mine spoil lands, denuded surfaces, row crops, active feed lots, trails, or other comparable conditions. Low 0.5 he sums cliparian qual 100 100% 100%	CI= (Sum % RA * Sc Rt Bank CI > Lt Bank CI > banks; root mats; \$	0.70	

Stream Impact Assessment Form Page 2								
Project #	Project # Project Name (Applicant) Locality HIIC Date SAR # ' '						Impact Factor	
22865.06 Mountain Valley Pipeline (Mountain Valley Pipeline, LLC) R3 03010101 8/27/2021 S-RR15 20 1								1

4. CHANNEL ALTERATION: Stream crossings, riprap, concrete, gabions, or concrete blocks, straightening of channel, channelization, embankments, spoil piles, constrictions, livestock

Conditional Category NOTES								
	Negligible	Mi	nor	Moderate		Severe		
Channel Alteration	Channelization, dredging, alteration, or hardening absent. Stream has an unaltered pattern or has naturalized.	Less than 20% of the stream reach is disrupted by any of the channel alterations listed in the parameter guidelines.	disrupted by any of the channel	is disrupted by any of the channel alterations listed in	60 - 80% of reach is disrupted by any of the channel alterations listed in the parameter guidelines. If stream has been channelized, normal stable stream meander pattern has not recovered.			CI
Scores	1.5	1.3	1.1	0.9	0.7	0.5		1.50
REACH CONDITION INDEX and STREAM CONDITION UNITS FOR THIS REACH								

NOTE: The CIs and RCI should be rounded to 2 decimal places. The CR should be rounded to a whole number.

THE REACH CONDITION INDEX (RCI) >>

1.24

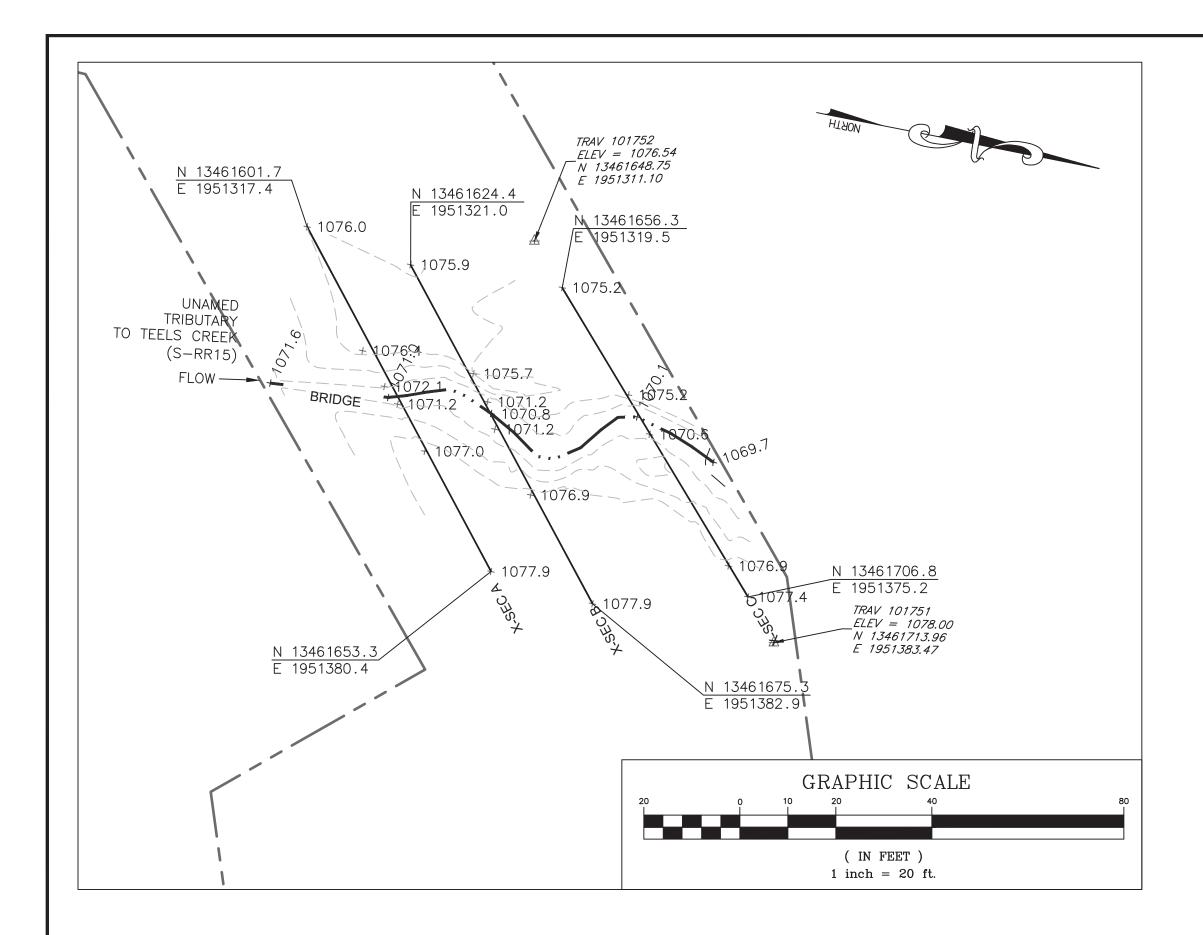
RCI= (Sum of all Cl's)/5, except if stream is ephemeral RCI = (Riparian Cl/2)

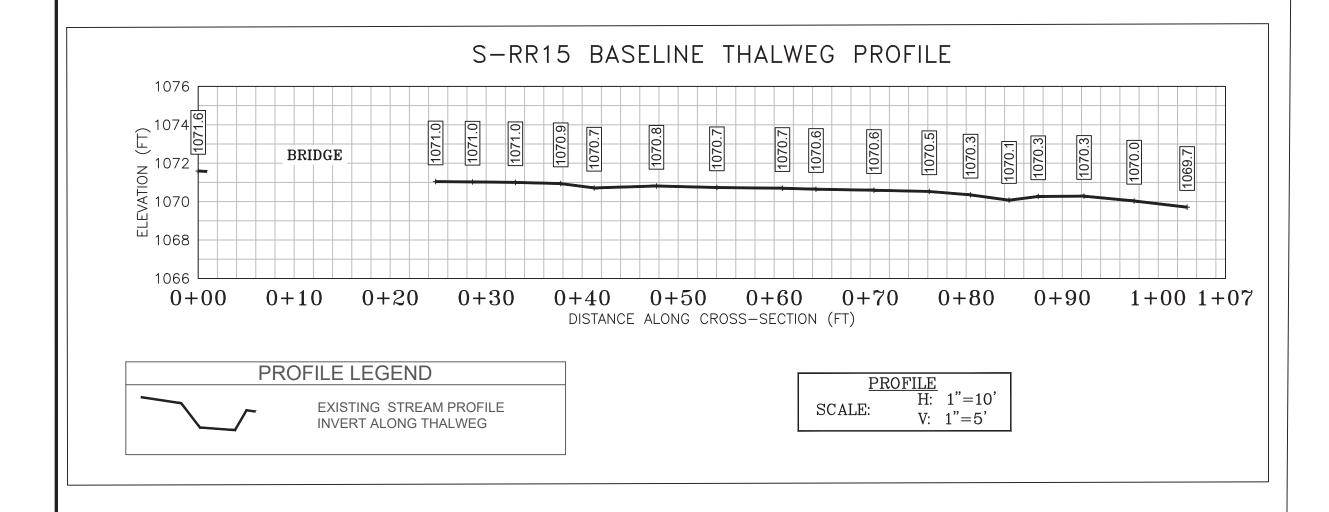
COMPENSATION REQUIREMENT (CR) >>

) >> 25

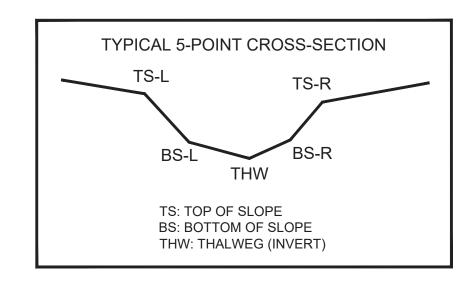
CR = RCI X L_I X IF

INSERT PHOTOS:

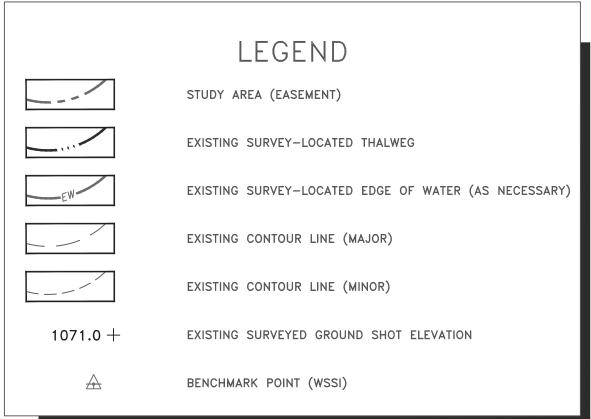

(WSSI Photo Location "L:\22000s\22800\22865.06\Admin\05-ENVR\Field Data\Spread I\Field Forms\S-RR15\Photos\S-RR15_RB DS VIEW_2021-08-27.jpg")

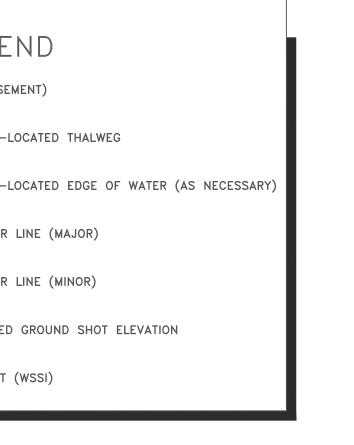


Downstream view of S-RR18 from the right bank facing N in the ROW. Assessment is limited to areas within the temporary ROW.


DESCRIBE	PROPOSED	IMPACT:

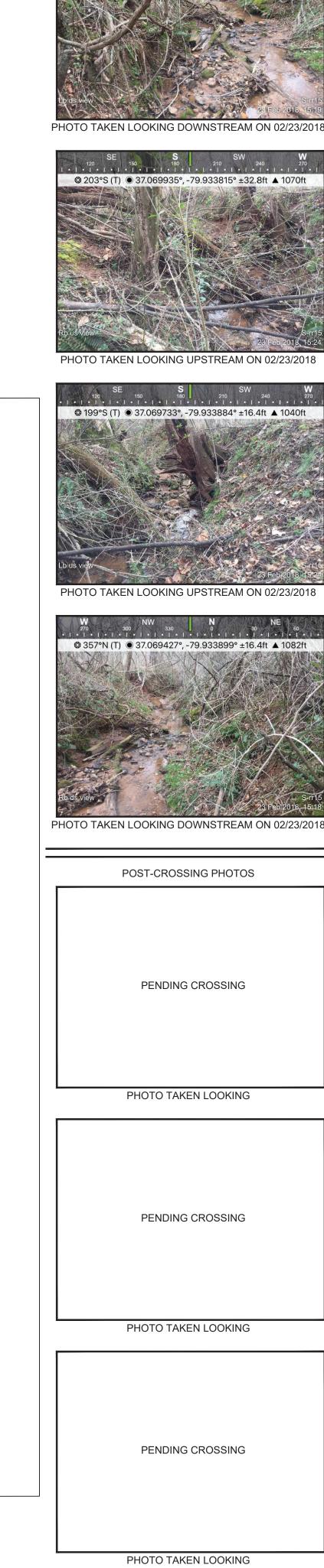
PROVIDED UNDER SEPARATE COVER




CL STAKEOUT POINTS: S-RR15 CROSS SECTION B (PIPE CL)								
	PR	E-CROSSING		POST-C	ROSSING			
DT LOC	NODTHING	IC FACTING FLEN		VERT.	HORZ.			
PT. LOC.	NORTHING	EASTING	ELEV	DIFF.	DIFF.			
TS-L	13461641.65	1951340.69	1075.69					
BS-L	13461645.68	1951345.87	1071.25					
THW	13461646.84	1951348.21	1070.80					
BS-R	13461649.17	1951352.16	1071.23					
TS-R	13461658.27	1951363.16	1076.86					

SURVEY NOTES:

- 1. This map has been oriented to NAD 1983 UTM ZONE 17N, and vertically to The North American Vertical Datum of 1988 (NAVD 88), using a Real Time Network (RTN) GPS. Field locations were completed on February 23, 2018.
- 2. Monumentation, including traverse stations and fly points, shown on this drawing should be used to orient any future boundary, topographic, or location survey.
- 3. Easement lines shown on plan view were provided by Mountain Valley Pipeline (MVP).
- 4. WSSI Contour Interval = 2.0'. Contours within the channel were interpolated using stream channel breaklines (i.e. top of slopes, toe of slopes, thalweg) and cross-sectional points. Contours outside the channel were interpolated using cross-sectional spot shots.
- 5. All section views shown are left to right facing downstream.
- 6. Cross-section B shot at location of pipe centerline (based on best professional judgement).



CROSS SECTION

CROSS SECTION LEGEND

EXISTING GRADE

V: 1"=5'

PRE-CROSSING PHOTOS

 ∞

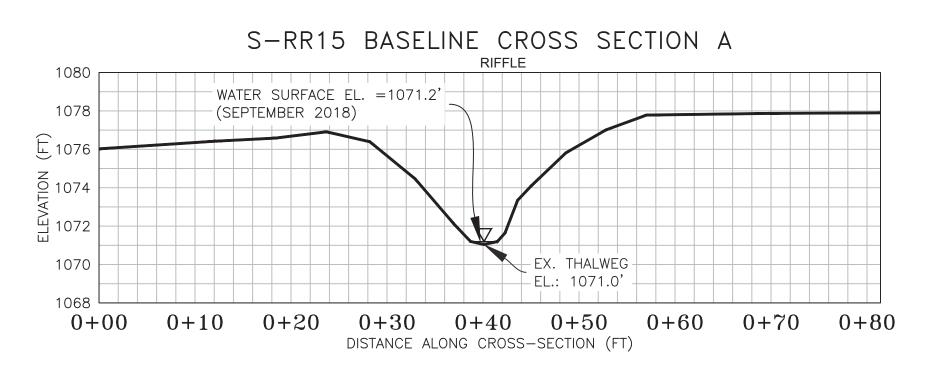
260.

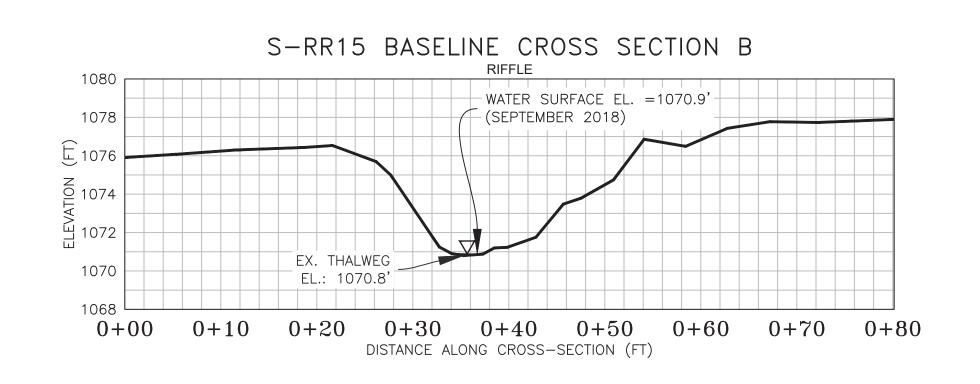
Horizontal Datum: NAD 1983 UTM ZONE

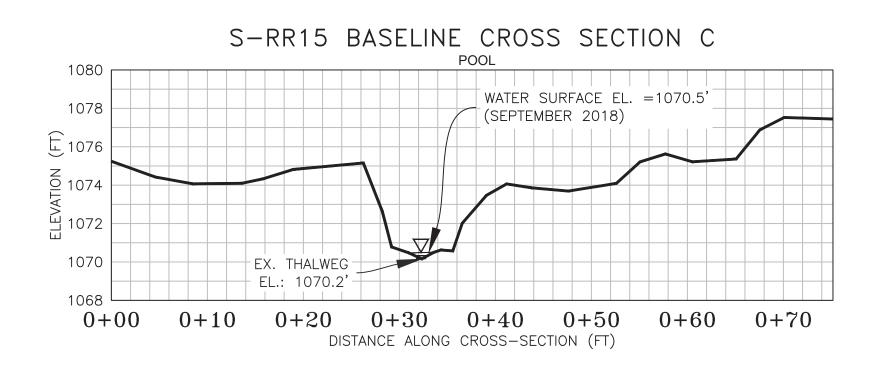
EJC SIH PFS

Sheet #

1 of 1


Vertical Datum: NAVD 88


Boundary and Topo Source:


WSSI 2' C.I. Topo

Computer File Name:

C:\WSSI-L\22865.03\Spread I Work Dwgs 22865_03 S-I MP 254-267 Sheets.dwg

NOTE: ALL SECTIONS VIEWS SHOWN FACING LEFT TO RIGHT FACING DOWNSTREAM.