APPENDIX G Site-Specific Design of Stabilization Measures in Selected High-Hazard Portions of the Route of the Proposed Mountain Valley Pipeline Project in the Jefferson National Forest Site-Specific Design of Stabilization Measures in Selected High-Hazard Portions of the Route of the Proposed Mountain Valley Pipeline Project in the Jefferson National Forest

Prepared by:

Mountain Valley Pipeline, LLC

625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222-3111

Updated March 13, 2018

Contents

Introduction	8
1.0 JNF Priority Site #1	10
1.1 Site Description and Geology	
1.2 Potential Slope Failure Hazards	12
1.2.1 Rock Failure	12
1.2.2 Debris Flow / Colluvial Deposit	13
1.2.3 Soil Stockpile and Subjacent Slope Failure	17
1.2.4 Temporary Cut Failures	
1.2.5 Erosion	
1.2.6 Trench Backfill Failures	
1.2.7 Seeps and Springs	
1.3 Mitigation Measures	19
1.4 Post-Construction Monitoring and Intervention	19
2.0 JNF Priority Site #2	21
2.1 Site Description and Geology	21
2.2 Potential Slope Failure Hazards	23
2.2.1 Rock Failure	23
2.2.2 Unconsolidated Overburden Failure	24
2.2.3 Soil Stockpile and Subjacent Slope Failure	26
2.2.4 Temporary Cut Failures	26
2.2.5 Erosion	26
2.2.6 Trench Backfill and Reclaimed Sideslope Failures	26
2.2.7 Seeps and Springs	27
2.3 Mitigation Measures	27

2.4 Post-Construction Monitoring and Intervention	28
3.0 JNF Priority Site #3	28
3.1 Site Description and Geology	28
3.2 Potential Slope Failure Hazards	32
3.2.1 Rock Failure	
3.2.2 Debris Flow / Colluvial Deposit	
3.2.3 Soil Stockpile and Subjacent Slope Failure	35
3.2.4 Temporary Cut Failures	
3.2.5 Erosion	
3.2.6 Trench Backfill and Reclaimed Sideslope Failures	
3.2.7 Seeps and Springs	
3.3 Bore Pit	
3.4 Mitigation Measures	
3.5 Post-Construction Monitoring and Intervention	
4.0 JNF Priority Site #4	
4.1 Site Description and Geology	
4.2 Potential Slope Failure Hazards	
4.2.1 Rock Failure	40
4.2.2 Unconsolidated Overburden Failure	40
4.2.3 Soil Stockpile and Subjacent Slope Failure	42
4.2.4 Temporary Cut Failures	43
4.2.5 Erosion	43
4.2.6 Trench Backfill and Reclaimed Sideslope Failures	43
4.2.7 Seeps and Springs	44
4.3 Mitigation Measures	
4.4 Post-Construction Monitoring and Intervention	45

	46
5.1 Site Description and Geology	46
5.2 Potential Slope Failure Hazards	47
5.2.1 Rock Failure	48
5.2.2 Unconsolidated Overburden Failure	48
5.2.3 Soil Stockpile and Subjacent Slope Failure	50
5.2.4 Temporary Cut Failures	50
5.2.5 Erosion	51
5.2.6 Trench Backfill Failures	51
5.2.7 Seeps and Springs	51
5.3 Bore Pit	51
5.4 Mitigation Measures	51
5.5 Post-Construction Monitoring and Intervention	52
6.0 JNF Priority Site #6	53
6.1 Site Description and Geology	53
6.2 Potential Slope Failure Hazards	57
6.2 Potential Slope Failure Hazards	57 57
 6.2 Potential Slope Failure Hazards 6.2.1 Rock Failure 6.2.2 Debris Flow / Colluvial Deposit 	57 57 58
 6.2 Potential Slope Failure Hazards 6.2.1 Rock Failure 6.2.2 Debris Flow / Colluvial Deposit 6.2.3 Soil Stockpile and Subjacent Slope Failure 	57 57 58 61
 6.2 Potential Slope Failure Hazards 6.2.1 Rock Failure 6.2.2 Debris Flow / Colluvial Deposit 6.2.3 Soil Stockpile and Subjacent Slope Failure 6.2.4 Temporary Cut Failures 	57 57 58 61 62
 6.2 Potential Slope Failure Hazards 6.2.1 Rock Failure 6.2.2 Debris Flow / Colluvial Deposit 6.2.3 Soil Stockpile and Subjacent Slope Failure 6.2.4 Temporary Cut Failures 6.2.5 Erosion 	57 57 58 61 62 62
 6.2 Potential Slope Failure Hazards	57 57 58 61 62 62 62
 6.2 Potential Slope Failure Hazards	57 57 61 62 62 62 62
 6.2 Potential Slope Failure Hazards	57 57 58 61 62 62 62 62 62
 6.2 Potential Slope Failure Hazards	57 57 58 61 62 62 62 62 63 63

8.0 Slope Stability Monitoring Program	64
8.1 LiDAR Surveys	64
8.2 Monitoring Schedule	65
8.3 Slope Stability Mitigation Measures	66
9.0 References:	68

Appendix A – Figures

- Figure 1 Jefferson National Forest Priority Sites
- Figure 2 JNF Priority Site #1 Slope Map
- Figure 3 JNF Priority Site #1 Profile
- Figure 4 JNF Priority Site #1A Cross Section Existing
- Figure 5 JNF Priority Site #1A Cross Section Construction Phase
- Figure 6 JNF Priority Site #1A Cross Section Post Construction
- Figure 7 JNF Priority Site #2 Slope Map
- Figure 8 JNF Priority Site #2 Profile
- Figure 9 JNF Priority Site #2A Cross Section Existing
- Figure 10 JNF Priority Site #2A Cross Section Construction Phase
- Figure 11 JNF Priority Site #2A Cross Section Post Construction
- Figure 12 JNF Priority Site #3 Slope Map
- Figure 13 JNF Priority Site #3 Profile
- Figure 14 JNF Priority Site #3A Cross Section Existing
- Figure 15 JNF Priority Site #3A Cross Section Construction Phase
- Figure 16 JNF Priority Site #3A Cross Section Post Construction
- Figure 17 JNF Priority Site #4 Slope Map
- Figure 18 JNF Priority Site #4 Profile
- Figure 19 JNF Priority Site #4A Cross Section Existing
- Figure 20 JNF Priority Site #4A Cross Section Construction Phase
- Figure 21 JNF Priority Site #4A Cross Section Post Construction
- Figure 22 JNF Priority Site #4B Cross Section Existing
- Figure 23 JNF Priority Site #4B Cross Section Construction Phase
- Figure 24 JNF Priority Site #4B Cross Section Post Construction
- Figure 25 JNF Priority Site #5 Slope Map
- Figure 26 JNF Priority Site #5 Profile
- Figure 27 JNF Priority Site #5A Cross Section Existing
- Figure 28 JNF Priority Site #5A Cross Section Construction Phase
- Figure 29 JNF Priority Site #5A Cross Section Post Construction
- Figure 30 JNF Priority Site #6 Slope Map
- Figure 31 JNF Priority Site #6 Profile
- Figure 32 JNF Priority Site #6A Cross Section Existing
- Figure 33 JNF Priority Site #6A Cross Section Construction Phase
- Figure 34 JNF Priority Site #6A Cross Section Post Construction
- Figure 35 JNF Priority Site #1B Cross Section Existing
- Figure 36 JNF Priority Site #1B Cross Section Construction Phase
- Figure 37 JNF Priority Site #1B Cross Section Post Construction
- Figure 38 JNF Priority Site #2-1 Cross Section Construction Phase
- Figure 39 JNF Priority Site #2-2 Cross Section Construction Phase
- Figure 40 JNF Priority Site #2-3 Cross Section Construction Phase
- Figure 41 JNF Priority Site #2-4 Cross Section Construction Phase
- Figure 42 JNF Priority Site #3-1 Cross Section Construction Phase
- Figure 43 JNF Priority Site #3-2 Cross Section Construction Phase
- Figure 44 JNF Priority Site #4-1 Cross Section Construction Phase
- Figure 45 JNF Priority Site #5-1 Cross Section Construction Phase
- Figure 46 JNF Priority Site #5-2 Cross Section Construction Phase
- Figure 47 JNF Priority Site #6-1 Cross Section Construction Phase
- Figure 48 JNF Priority Site #1 Slope Stability Map
- Figure 49 JNF Priority Site #2 Slope Stability Map

- Figure 50JNF Priority Site #3 Slope Stability MapFigure 51JNF Priority Site #4 Slope Stability MapFigure 52JNF Priority Site #5 Slope Stability Map

- JNF Priority Site #6 Slope Stability Map Figure 53

Appendix B – Typical Drawings

Appendix C – Slope Stability Output

Introduction

The following analyses are in response to the October 24, 2016, *Request for Site-Specific Design of Stabilization Measures in Selected High-Hazard Portions of the Route of the proposed Mountain Valley Pipeline Project in the Jefferson National Forest* letter. The report was updated in February 2018, in response to comments from Jefferson National Forest personnel regarding narrowed workspace width in areas of undulating right of way and clarification of the existing report.

Six JNF Priority Sites were identified in the letter and are addressed herein. These sites are shown on the Jefferson National Forest Priority Sites map of Figure 1.

Potential hazards and associated mitigations are discussed on an individual basis for each Priority Site. Monitoring strategies are discussed following the site-specific discussion.

Mitigation measures prescribed in this document are comparable to those recommended in *Mitigation of Land Movement in Steep and Rugged Terrain for Pipeline Projects* by the Interstate Natural Gas Association of America (INGAA) published in May 2016. The mitigation measures described in the INGAA report have been successfully implemented on numerous pipeline projects in the Appalachian region.

Figures depicting the ground surface during construction show a soil swell of 25 percent for topsoil and 50 percent for spoil (based on bedrock as the primary excavated material), which will actually be less as the spoil piles will be compacted. Nonetheless, a conservative swell volume was chosen to depict worst-case conditions during construction. The original ground surface contours will be restored as practicable during reclamation activities and the replaced soil/rock fragments will be graded to meet the existing contours at the edge of the right of way. Topsoil will be placed on top of the graded surface. Any excess soil or rock fragments generated due to soil/rock swell will be hauled to an approved offsite location for disposal.

In general, fill material should not contain topsoil, organics, frozen materials, or rock fragments larger than 6 inches in diameter. Fill material should be compacted in loose lifts not exceeding 12 inches in thickness. Each lift should be tracked in with a CAT D6 dozer or equivalent making no fewer than three passes per lift. Saturated materials or those exhibiting signs of pumping and rutting during compaction should be amended by mixing with drier materials, spreading and drying, or other drying methods prior to fill placement.

During construction, Mountain Valley will deploy a landslide inspection team to identify geohazards encountered along the pipeline alignment. The landslide inspection team will develop mitigation schemes for the identified geohazards using Mountain Valley's landslide mitigation typical drawings. These drawings are included in Appendix B. The use of all included typical drawings is not prescribed herein, but Mountain Valley's landslide inspection team may implement these schemes as necessitated by subsurface conditions revealed during construction. If subsurface conditions are not conducive to the use of the included typical drawings, additional mitigation schemes will be developed by the landslide inspection team for use in the field.

1.0 JNF Priority Site #1

Coordinates: (37.384428, -80.679174) to (37.381628, -80.677097)

1.1 Site Description and Geology

This site is located on the lowest downslope National Forest Service lands and on private property adjacent to National Forest Service lands, on the lower downslope south side of Peters Mountain, approximately between milepost (MP) 198.15 to 198.35 on the October 2016 Proposed Route.

Slopes within the temporary right-of-way (ROW) in the near vicinity of the JNF Priority Site #1 range from 16 to 85 percent, and generally become more gradual further downslope. As shown on the plan view slope map of Figure 2, the steepest part of the proposed right of way in the JNF Priority Site #1 area is approximately between MP 198.2 and 198.3

A profile of the site is shown on Figure 3. The pipeline will be approximately three feet below grade at this location, with the bottom of the pipeline trench located approximately seven feet below grade. The trench will be backfilled with select backfill, which will be shaker bucket material from the native soil and rock. Cross section 1A is shown on Figures 4, 5, and 6, and cross section 1B is shown on Figures 35, 36, and 37, showing the anticipated extent of trenching and stockpiled material before, during, and after construction, respectively.

According to Rader and Gathright (1986) and Schultz and Stanley (2001) the geology of general area of the JNF Priority Site #1 area is highly folded and thrust-faulted, northeast striking and steeply dipping (generally 50-60°) Silurian to Cambro-Ordovician age bedrock. The upslope vicinity of the JNF #1 area is underlain by the undivided Tonoloway Limestone and Keefer Sandstone. A splay fault of the Narrows thrust fault is mapped in the upslope vicinity of the JNF Priority Site #1 location. Colluvial overburden obscures bedrock outcrop in the vicinity of the JNF Priority Site #1 location. Colluvial overburden obscures bedrock outcrop in the vicinity of the JNF Priority Site #1 area, where underlying bedrock is mapped as Silurian age Rose Hill and Tuscarora Formations (red shales, mudstone, fine to medium red to gray to white sandstones and quartzite) conformably overlying upper Ordovician age Juniata Formation bedrock further downslope. The Juniata Formation conformably contacts Ordovician age undivided Reedsville Shale and Trenton Limestone (interbedded gray calcareous shale, fossiliferous limestone and minor calcareous sandstone, thin gray shale beds). The ancient, inactive Narrows thrust fault is an unconformable contact between the Ordovician Reedsville and Trenton strata and older Cambro-Ordovician age Knox Group (predominantly dolostone) that underlies the valley floor.

Photo 1: Red and brown sandstones characteristic of the Rose Hill Formation were observed as float upslope of the JNF Priority Site #1 area (view is toward north-northwest)

Photo 2: White to gray sandstone talus blocks characteristic of the Tuscarora Formation observed as abundant float near the vicinity of the JNF Priority Site #1 (view is upslope toward the west)

Photo 3: The JNF Priority Site #1 situated on an ancient colluvial fan composed primarily of Tuscarora sandstone (view is sideslope to the southwest)

Schultz et al (1986) map these characteristic areas as "Colluvium undifferentiated: boulders, gravel, sand and silt; includes rock fall, talus, debris train, and block field deposits".

1.2 Potential Slope Failure Hazards

Potential slope failure hazards that were considered for this area included rock failure, debris flow, remobilization of colluvial deposits, shallow failure of stockpiled trench/topsoil, slope failure subjacent to stockpiles, failure of cut slopes created during construction, post-construction erosion of the reclaimed right of way, shallow sloughing failure of the trench backfill, and water intrusion from seeps and springs encountered in the trench.

A slope failure in this vicinity could impact streams S-Q10 and S-Q11, which are tributaries to Big Stony Creek and are at least 275 feet east-southeast from the proposed temporary right of way.

These slope failure hazards and associated mitigation and avoidance strategies are discussed below.

1.2.1 Rock Failure

Rock-block failure involves gravity-induced movement of large, relatively intact blocks of bedrock on steep slopes. The bedrock mass is typically a complex geological body resulting from variable lithology, tectonic stresses and weathering that lead to differential loading and unloading. Rock-block failures typically occur where stronger bedrock units transition to weaker or weathered units and become undercut. Rock falls or topples entail abrupt movements of bedrock mass or boulders that detach along discontinuities (fractures, joints, bedding planes) or the forward rotation of a unit or units about some pivotal point. Movement occurs by free-fall, bouncing, and rolling. Falls are strongly influenced by

gravity, mechanical weathering, and the presence of interstitial water. Field reconnaissance of the JNF Priority Site #1 did not reveal conditions that would lead to potential rock block failure. Bedrock is not exposed as over-steepened cliffs or ledges, is covered by soil overburden, and is likely stable in-place. Therefore, based on field observations of the JNF Priority Site #1 and planned construction activities, Mountain Valley considers the potential for rock failure to be so remote as to be negligible. No mitigation measures for rock failure are prescribed at JNF Priority Site #1.

1.2.2 Debris Flow / Colluvial Deposit

Debris flows are generally considered to be high-energy, rapid downslope movement of earth material that can entrain trees and other large objects in the flow path. A debris flow differs from rock-block slide in that there are no well-defined blocks moving along shear surfaces. Instead, the mass flows downhill, with shear strains present everywhere. Debris flows generally occur during intense precipitation events, and travel rapidly downslope along existing drainage channels or stream valleys, transporting and depositing mud, sand, gravel, and boulders where the slope gradient flattens. Multiple debris flows may coalesce into a central channel downslope from the points of initiation.

Colluvial deposits observed in the vicinity of the JNF Priority Site #1 may be derived from past debris flow(s), or other forms of mass wasting. However, this analysis groups debris flow with colluvial deposits because pipeline construction within, or in the vicinity of an observed colluvial deposit entails similar precautions to that for a debris flow.

Major controls on the potential to initiate a debris flow include topographic gradient and orientation of the slope, bedrock structure, and the accumulation of historic debris flows in topographic drainage features that concentrate surface and subsurface water during intense precipitation events. Field observations of the JNF Priority Site #1 suggest that topographic and bedrock conditions are not likely susceptible to generating a new debris flow at the JNF Priority #1 site. However, colluvial deposit(s) observed at, and in the near vicinity of, the site (as described above), coupled with the potential for extreme precipitation events, warrant consideration for construction and long-term operation of the pipeline.

Field observations indicated that the colluvium in the vicinity of the JNF Priority Site #1 generally accumulates in topographic drainage features below the south-sloping ridgeline where the proposed alignment is situated. The pipeline trench in the vicinity of JNF Priority Site #1 will be located in thin overburden overlying bedrock forming a downslope ridge. Nonetheless, adjacent colluvial deposit(s) may be encountered within the overall limit of disturbance (LOD) during construction, and is therefore being evaluated for slope stability. The landslide mitigation specialists deployed by Mountain Valley during construction will determine if additional mitigation measures need to be implemented based on the depth

of the colluvial deposit and its position relative to the pipeline. If the pipeline must be located within the colluvial deposit due to the deposit's depth, the implementation of additional measures will be dependent upon the direction of the mass movement and steepness, where encountered. If movement follows the pipeline longitudinally, no additional measures will be required to protect the pipe. If movement is transverse or oblique to pipeline orientation, the trench may be backfilled with deformable material or wrapped in a protective sleeve to attenuate potential strain on the pipeline.

Slope Stability and Pipeline Integrity Analyses

As discussed above, the JNF Priority Site #1 is situated adjacent to colluvial deposits overlying clastic sedimentary bedrock. Activities within the LOD may encounter the colluvial deposit. Soil test pits conducted in the vicinity of the JNF Priority Site #1 indicated that bedrock is more than three feet deep, and based on field observations (e.g., incised drainages, local road cuts) depth to bedrock increases toward the central portion of the drainage where colluvium tends to accumulate.

Existing slope stability at the JNF Priority Site #1 was evaluated by establishing safety factors using a numerical model with input from field observations, probabilistic analysis of material properties and analyst experience. Slope failure risk analysis was approximated using the peer-reviewed slope stability program SLIDE (RocScience, Inc.). This model incorporates Bishop, Janbu and Spencer methods, generates circular, non-circular, and optimized shaped failure planes with seismic and boundary loads.

Observations of historical slope failures in other areas suggest that the likely slip plane will occur at the overburden-bedrock interface resembling an infinite slope failure. However, the depth of the slip surface within the colluvium material has a minimal effect on the Factor of Safety (FoS) (i.e., difference of less than 0.05). Therefore, the model simulates a failure surface near the overburden-bedrock interface to represent a failure with an adverse effect and not shallow, surficial sloughs.

A probabilistic model was applied to the colluvial soil's shear strength (friction angle) and unit weight using highest and lowest conceivable values (Duncan, 2000). Stability analyses were run for slope angles ranging from 15% (9 degrees) to 76% (37 degrees).. While limited areas of slope exceeding this range exist at JNF Priority Site #1, they are likely composed of rocky outcrops and not colluvium. Modeling also accounted for saturated conditions and seismic loading (0.16 g; see Mountain Valley Pipeline Resource Report #6, seismic hazards analysis). Examples of the sensitivity analysis are shown below for a 30 percent slope with saturated soils.

Photo 4: Example of sensitivity plot for the shear strength and unit weight of colluvium versus factor of safety

Photo 5: Example sensitivity plot for the shear strength of the colluvium versus factor of safety (likely (mean) phi=36°, lower limit=24°, upper limit=50°)

The output files for results of each analysis at the likely soil parameters are included in Appendix C. Table C-1 in Appendix C summarizes the full range of stability analysis results given the probabilistic analyses for input parameters soil density and friction angle, under increasing slope, saturated and unsaturated conditions, and with and without seismic loading.

In summary from Table C-1, based on likely colluvial material density and friction angle values, the existing colluvial deposit slopes at JNF Priority Site #1 are stable (minimum FoS of 1.1) up to at least 65% (33 degrees) native slopes under unsaturated conditions with no seismic loading, and 45% (24 degrees) native slopes with seismic loading. Under saturated conditions, risk for slope failure increases substantially.

The slope stability model suggests that colluvial slopes in the near vicinity of the JNF Priority Site #1 are stable within FoS values under unsaturated conditions. The model also confirms what Mountain Valley has already accounted for in construction practices, that the largest effect on the FoS is soil saturation from groundwater intrusion, or surface water infiltration, to the colluvial deposit (i.e., as soils become saturated, stability decreases). As discussed, Mountain Valley is aware of the need to prevent accumulation of storm water during construction, permanently divert subsurface springs or seeps from the pipeline bedding and near vicinity if encountered during construction, and to properly grade and reclaim the ground surface in the LOD after construction. Preventing saturated conditions on these steep slope environments is a critical factor in maintaining slope stability. The project stormwater management plans and subsurface drains implemented during construction will address the issue of overburden saturation.

The analysis suggests there is minimal risk of ground displacement. From the perspective of pipeline integrity and safety, D. G. Honegger Consulting (2015) indicated that slope displacements parallel to the proposed alignment can be screened out as not representing a significant hazard if the length of pipeline exposed to ground displacement is less than 1,150 feet (Class 1 pipe) to 1,640 feet (Class 3 pipe) from the top of the slope (screening approach assumes a relatively straight line with no connections or insulated joints in the screening distance). While Mountain Valley does not anticipate any slope failure to occur, it is even more unlikely that failure on the magnitude of 1,000's of feet will occur. Thus the effects of displacement on the pipeline have not been analyzed. As discussed later in this document, Mountain Valley will implement a post-construction slope monitoring program. If future monitoring observations suggest slope movement is occurring, Mountain Valley will take appropriate actions to stabilize the slope and will evaluate pipeline response to the nature and degree of observed ground displacement using the recommendations provided in PRCI (2009).

16

1.2.3 Soil Stockpile and Subjacent Slope Failure

Soil stockpiles will be compacted with tracked equipment. Excavation and backfilling will be completed as quickly as possible to minimize the duration of stockpiling. At JNF Priority Site #1, the contractor will install a temporary backstop below the toe of the stockpiled material, such as reinforced silt fence, to prevent rocks from and stockpiled material from rolling/sliding off of the ROW.

Mountain Valley completed additional slope stability and sensitivity analysis in February 2018, that shows that no spoil materials should be stored on slopes exceeding 77 percent. Spoil materials resembling the strength parameters for USCS soil type GP should not be stockpiled on slopes exceeding 63 percent; spoil materials resembling the strength parameters for USCS soil type GC should not be stockpiled on slopes exceeding 77 percent. Supporting slope stability analyses are included in Appendix C. A slope map depicting the slope conditions discussed above is included as Figure 48.

In areas of the ROW steeper than 63%, spoil will be evaluated by Mountain Valley's field geologist to determine which soil type it most closely resembles. If the spoil resembles the strength parameters for GP material, it will be moved to a flatter area temporarily during construction, then moved back during final restoration. No spoil will be stored on slopes exceeding 77 percent.

In steeper areas of the ROW, spoil stockpiles will be stored on bedrock with little soil overburden. Thus, overloading the slope in the steeper regions of the JNF Priority Site #1 does not present a technical concern for construction in these steeper areas. Temporary spoil stockpiles stored on rock will be internally stable with a factor of safety of at least 1.2 as demonstrated in Appendix C.

Colluvial deposits were observed in the flatter portions of the site. Stability of the native material underlying spoil stockpiles is of concern. The spoil will be spread out across the workspace to the extent practicable to avoid overloading the in-situ colluvial soils. Stockpiles will be compacted with tracked equipment to prevent water infiltration and saturation of the material and thus minimize the weight of the stockpiled soil.

A geologist from the landslide inspection team deployed by Mountain Valley during construction will evaluate the subgrade to determine whether or not it is appropriate to stockpile soils in the vicinity of the colluvial deposit. The exact thickness of the colluvial deposit will not be fully determined until excavation is initiated, but as previously described, as colluvial debris generally follow ravines and drainage paths and the pipeline ROW is located on a ridge, it is unlikely that the colluvial deposit is extremely thick in the workspace area. Therefore, soils may be sufficiently thin that instability due to stockpiled material is not a concern. If the colluvial deposit is well-consolidated and relatively dry, material may be stored on top of it, at the discretion of the geologist. If colluvial deposits exceed about five feet, spoil stockpiles will be moved up or downslope to a more stable area to avoid overloading the colluvial deposit and initiating a failure.

1.2.4 Temporary Cut Failures

Cut slopes created during construction at JNF Priority Site #1 are anticipated to be minor (less than about five feet in height) and located in rock. Cut slopes will not exceed the maximum safe angle per OSHA standards for the type of material being excavated. Temporary rock cuts are anticipated to be stable in the long-term following reclamation as they will be protected from weathering by compacted native material placed to original contours as practicable.

1.2.5 Erosion

Erosion hazards will be mitigated by following the project Erosion and Sediment Control Plan (E&SCP). Refer to the E&SCP for details.

1.2.6 Trench Backfill Failures

The pipeline trench will be provided with trench breakers at locations specified in the project E&SCP. These trench breakers will act as gravity retaining walls within the trench to hold the backfill in place during construction and will slow the velocity of water running through the trench, preventing subsurface erosion. Every third trench breaker at this location will be provided with daylight drains, as shown on typical drawing MVP-35, discharging water building up in the trench to water dissipation devices at the ground surface. All trench breakers not provided with daylight drains will be provided with pass-through drains as shown on typical drawing MVP-43.

As the trench backfill will be placed in compacted lifts, the trench backfill will be at least as stable as the distal extent of in-situ colluvial deposits, if encountered. Slope stability analysis of the trench backfill is included in Appendix C. Up to approximately 65 percent slope, backfill is anticipated to be stable with a safety factor of at least 1.5. In areas steeper than 65 percent (which are likely rock outcrop areas), additional slope breakers should be installed in the trench backfill, spaced a maximum of 25 feet apart. Larger rocks from the excavation should be placed in the upper two feet of backfill at these steep areas to armor the backfill between the trench breakers.

1.2.7 Seeps and Springs

As the presence of seeps/springs encountered in the pipeline trench will not be known until the trench is excavated, their location and extent cannot be determined at this time. At JNF Priority Site #1, seepage (if any is encountered) will be captured by daylight drains behind the trench breakers, as shown on typical

drawing MVP-35. These drains will outlet to energy dissipation devices at the right-of-way ground surface and any resulting discharge will be directed downslope to prevent accumulation within the LOD. Trench breaker locations are shown on the project E&SCP.

1.3 Mitigation Measures

Overall best management practices include:

- controlling surface runoff from the limit of disturbance and the reclaimed construction area to prevent direct flow into exposed debris flow or colluvial deposit;
- intercepting and controlling subsurface drainage from the excavation during construction and post-construction to prevent subsurface infiltration into the underlying debris flow or colluvial deposit;
- constructing in a timely fashion to reduce the amount of time when the limit of disturbance is exposed to the elements and not under final grade;
- and installing additional trench breakers (minimum 25-foot spacing) in areas steeper than 65 percent slope and armoring the ground surface in these steep areas with larger rocks from the trench excavation.

Subsurface conditions observed during construction may dictate the use of enhanced mitigation measures. Site-specific observations made by the Mountain Valley landslide inspection team during construction may result in the team's recommendation for deployment of additional specific mitigation measures, which consider potential native ground movement around or below the ROW, disturbed temporary ground surface movement from initial grading and subsequent construction work and finished and restored ROW surface.

Based on field observations during construction, Mountain Valley may implement slope breakers, water bars, additional grading, French drains, armored slopes and/or ditches as enhanced drainage control measures to promote slope stability. Mountain Valley does not anticipate that structures will be required to stabilize bedrock within the trench excavation, or adjacent native soils or colluvium, however highwall/steep slope revetments or geogrid may be implemented to increase the stability of backfilled areas if soils do not exhibit the strength parameters modeled herein.

1.4 Post-Construction Monitoring and Intervention

See the discussion on post-construction monitoring and potential for intervention for the JNF Priority Sites that is presented in the last section of this document. Slope monitoring is a critical element of postconstruction operations of the pipeline and the recommended procedures (including potential reclamation measures) are applicable to all of the JNF Priority Sites.

2.0 JNF Priority Site #2

Coordinates: (37.30601, -80.397099) to (37.30346, -80.394457)

2.1 Site Description and Geology

This site is on the north side of Brush Mountain from approximately MP 220.5 to MP 220.75 as shown on the October 2016 Proposed Route. The October 24, 2016, *Request for Site-Specific Design of Stabilization Measures in Selected High-Hazard Portions of the Route of the proposed Mountain Valley Pipeline Project in the Jefferson National Forest* letter requested that "the route variation to another ridge on the north side of Brush Mountain" be addressed in addition to the area described above. This ridge is not addressed herein; however, it exhibits similar geologic features to the ridge analyzed in this document.

Slopes within the temporary right of way range from nearly flat to 92 percent, and are generally steeper in the middle portion of the site. As shown on the plan view slope map of Figure 7, the pipeline route follows a narrow ridge in this area. East of the permanent ROW, the temporary ROW slopes steeply, exceeding 60 percent slope throughout much of the area of concern. The site is immediately subjacent to FR 188 – Brush Mountain Road.

A profile of the site is shown on Figure 8. The pipeline will be approximately 4 feet below grade, with the bottom of the pipeline trench located approximately 8 feet below grade. The trench will be backfilled with select backfill, which will be shaker bucket material from the native soil and rock. Cross section 2A is shown on Figures 9, 10, and 11, depicting the anticipated extent of trenching and stockpiled material before, during, and after construction. Cross Sections 2-1, 2-2, 2-3, and 2-4 are depicted on Figures 38 through 41. These cross sections depict construction-phase conditions and include the locations of trees left in place to create an undulating right of way edge. Mountain Valley has elected to leave an additional buffer of trees in the easternmost 6 feet of the temporary right of way along the steepest sideslope portions of this Priority Site.

Mountain Valley will employ stovepipe construction techniques throughout the steep sideslope portion of JNF Priority Site 2, whereby the pipe is welded in the ditch along a limited length of open trench and less working space is required. The pipeline will be installed along the western edge of the 50-foot permanent ROW and the ridgetop will be used to stage the equipment. This minimizes the amount of spoil generated. As this construction practice will proceed in a linear fashion, the minor amount of spoil generated will be spread across the ROW (on portions of the ROW not exceeding the slope thresholds

derived from the slope stability analysis described below) north or south of the segment being constructed.

According to the Geologic Map of Virginia (1993) the geology of the general vicinity of the JNF Priority Site #2 is highly folded and thrust-faulted, northeast striking and steeply dipping (generally 50-60°) Mississippian to Devonian age clastic sedimentary bedrock. The Mississippian Age Price Formation sandstone, conglomeratic sandstone and shale typically forms the Brush Mountain ridge line. Westnorthwest and downslope from the ridgeline, the proposed alignment overlies Devonian age Chemung Formation sandstone, shale, thin quartz-pebble conglomerates and red beds. Field reconnaissance confirmed that there are no observed bedrock outcrops below the ridgeline in the vicinity of JNF Priority Site #2 and further downslope until the valley floor. Residual soil overburden is present on the northwest slope of Brush Mountain and is likely 10 feet thick or less near the JNF Priority Site #2.

Photo 6: Exposure of the Price sandstone outcrop at the ridge line near JNF Priority Site #2

Photo 7: Downslope exposure of bedrock was not observed, but the steep slopes in the vicinity of the JNF Priority Site #2 suggest only a thin overburden mantle overlies the downslope Devonian age bedrock (view is to the north)

2.2 Potential Slope Failure Hazards

At this site, potential slope failure hazards that were considered included rock failure, unconsolidated overburden failure, shallow failures of the stockpiled trench/topsoil, slope failures subjacent to stockpiles, failure of temporary slopes created during construction, post-construction erosion of the reclaimed right of way, shallow sloughing failures of the trench backfill, and water intrusion from seeps and springs encountered in the trench.

No jurisdictional waters have been identified in the vicinity of Priority Site #2, however two drainage areas are located to the east and west of this ridge.

These hazards and associated mitigation and avoidance strategies are discussed in detail below.

2.2.1 Rock Failure

Rock-block failure involves gravity-induced movement of large, relatively intact blocks of bedrock on steep slopes. The bedrock mass is typically a complex geological body resulting from variable lithology, tectonic stresses and weathering that lead to differential loading and unloading. Rock-block failures typically occur where stronger bedrock units transition to weaker or weathered units and become undercut. Rock falls or topples entail abrupt movements of bedrock mass or boulders that detach along discontinuities (fractures, joints, bedding planes) or the forward rotation of a unit or units about some pivotal point. Movement occurs by free-fall, bouncing, and rolling. Falls are strongly influenced by gravity, mechanical weathering, and the presence of interstitial water. Field reconnaissance of the JNF Priority Site #2 did not reveal conditions that would lead to potential rock block failure. Bedrock is not exposed as over-steepened cliffs or ledges, is covered by soil overburden, and is likely stable in-place.

Therefore, based on field observations of the JNF Priority Site #2 and planned construction activities, Mountain Valley considers the potential for rock failure to be so remote as to be negligible. No mitigation measures for rock failure are anticipated at JNF Priority Site #2.

2.2.2 Unconsolidated Overburden Failure

Field observations and geologic mapping indicate that the JNF Priority Site #2 is underlain by a residual soil mantle that overlies clastic sedimentary bedrock. Based on field observations overburden is likely 10 feet thick or less. As discussed above, the pipeline trench in the vicinity of JNF Priority Site #2 will be located as deep as 4 feet below grade, likely below the residual overburden and into the upper reaches of stable shallow bedrock. This will be further evaluated by Mountain Valley's geologist when subsurface conditions become apparent during construction.

Major controls on the potential to initiate a landslide (unconsolidated overburden failure) include topographic gradient and orientation of the slope, bedrock structure, and topographic drainage features that concentrate surface and subsurface water during intense precipitation events. Mountain Valley evaluated overburden observed (as described above) at the JNF Priority Site #2, coupled with the potential for extreme precipitation events, for consideration of failure risk during construction and longterm operation of the pipeline.

Slope Stability and Pipeline Integrity Analyses

Existing slope stability at the JNF Priority Site #2 was evaluated by establishing safety factors using a numerical model with input from field observations, probabilistic analysis of material properties and analyst experience. Slope failure risk analysis was approximated using the peer-reviewed slope stability program SLIDE (RocScience, Inc.). This model incorporates Bishop, Janbu and Spencer methods, generates circular, non-circular, and optimized shaped failure planes with seismic and boundary loads.

Observations of historical slope failures in other areas suggest that the likely slip plane will occur at the overburden-bedrock interface resembling an infinite slope failure. However, the depth of the slip surface within the colluvium material has a minimal effect on the Factor of Safety (FoS) (i.e., difference of less than 0.05). Therefore, the model simulates a failure surface near the overburden-bedrock interface to represent a failure with an adverse effect and not shallow, surficial sloughs.

A probabilistic model was applied to the colluvial soil shear strength (friction angle) and unit weight using highest and lowest conceivable values (Duncan, 2000). Stability analyses were run for slope angles ranging from 15% (9 degrees) to 76% (37 degrees)... While limited areas of slope exceeding this range exist, they are likely composed of rocky outcrops and not colluvium. Modeling also accounted for

saturated conditions and seismic loading (0.16 g; see Mountain Valley Pipeline Resource Report #6, seismic hazards analysis). Slope stability model output is provided in Appendix C. Table C-1 in Appendix C summarizes the full range of stability analysis results given the probabilistic analyses for input parameters soil density and friction angle, under increasing slope, saturated and unsaturated conditions, and with and without seismic loading.

In summary from Table C-1, based on likely residual soil density and friction angle values, the existing native overburden slopes at JNF Priority Site #2 are stable (minimum FoS of 1.1) up to at least 65% (33 degrees) native slopes under unsaturated conditions with no seismic loading, and 45% (24 degrees) native slopes with seismic loading. The analysis results suggest the slopes are stable at an acceptable FoS under unsaturated conditions.

Under saturated conditions, risk for slope failure increases substantially. The model confirms what Mountain Valley has already accounted for in construction practices, that the largest effect on the FoS is soil saturation from groundwater intrusion, or surface water infiltration, to the colluvial deposit (i.e., as soils become saturated, stability decreases). As discussed, Mountain Valley is aware of the need to prevent accumulation of storm water during construction, permanently divert subsurface springs or seeps from the pipeline bedding and near vicinity if encountered during construction, and to properly grade and reclaim the ground surface in the LOD after construction. Preventing saturated conditions on these steep slope environments is a critical factor in maintaining slope stability. The project stormwater management plans and subsurface drains implemented during construction will address the issue of overburden saturation.

The analysis suggests there is minimal risk of ground displacement. From the perspective of pipeline integrity and safety, D. G. Honegger Consulting (2015) indicated that slope displacements parallel to the proposed alignment can be screened out as not representing a significant hazard if the length of pipeline exposed to ground displacement is less than 1,150 feet (Class 1 pipe) to 1,640 feet (Class 3 pipe) from the top of the slope (screening approach assumes a relatively straight line with no connections or insulated joints in the screening distance). While Mountain Valley does not anticipate any slope failure to occur, it is even more unlikely that failure on the magnitude of 1,000's of feet will occur. Thus the effects of displacement on the pipeline have not been analyzed. As discussed later in this document, Mountain Valley will implement a post-construction slope monitoring program. If future monitoring observations suggest slope movement is occurring, Mountain Valley will take appropriate actions to stabilize the slope and will evaluate pipeline response to the nature and degree of observed ground displacement using the recommendations provided in PRCI (2009).

2.2.3 Soil Stockpile and Subjacent Slope Failure

Temporary spoil will be stockpiled across the temporary right of way north or south of the limited trench excavation length. Spoil will only be stockpiled in areas meeting the slope stability requirements described below, mostly within the permanent right of way. Soil stockpiles will be compacted with tracked equipment. Excavation and backfilling will be completed as quickly as possible to minimize the duration of stockpiling. At JNF Priority Site #2, the contractor will install a temporary backstop, such as reinforced silt fence, to prevent rocks and stockpiled material from rolling/sliding off of the ROW.

Mountain Valley completed additional slope stability and sensitivity analysis in February, 2018, that shows that no spoil materials should be stored on slopes exceeding 77 percent. Spoil materials resembling the strength parameters for USCS soil type GP should not be stockpiled on slopes exceeding 63 percent; spoil materials resembling the strength parameters for USCS soil type GC should not be stockpiled on slopes exceeding 77 percent. Supporting slope stability analyses are included in Appendix C. A slope map depicting the slope conditions discussed above is included as Figure 49.

Field observations indicate the likelihood of a thin soil mantle at the site and spoil stockpiles will be stored on rock. Thus, overloading the subjacent slope at JNF Priority Site #2 does not present a technical concern for construction in this area. Temporary spoil stockpiles stored at the slopes described above will be stable with a factor of safety of at least 1.2 as demonstrated in Appendix C.

2.2.4 Temporary Cut Failures

Cut slopes created during construction at JNF Priority Site #2 are anticipated to be cut into rock. Cut slopes will not exceed the maximum safe angle per OSHA standards for the type of material being excavated, and as such are expected to be stable during construction. As any cuts made temporarily during construction will be reclaimed with native material (buttressing the cut slope) placed to original contours as practicable, cut slopes are anticipated to be stable in the long term.

2.2.5 Erosion

Erosion hazards will be mitigated by following the project E&SCP. Refer to the E&SCP for details.

2.2.6 Trench Backfill and Reclaimed Sideslope Failures

The pipeline trench will be provided with trench breakers at locations specified in the project E&SCP. These trench breakers will act as gravity retaining walls within the trench to hold the backfill in place during construction and will slow the velocity of water running through the trench, preventing subsurface erosion. Every third trench breaker at this location will be provided with daylight drains, as shown on typical drawing MVP-35, discharging water building up in the trench to water dissipation devices at the ground surface. All trench breakers not provided with daylight drains will be provided with pass-through drains as shown on typical drawing MVP-43.

Trench backfill is anticipated to be stable with a factor of safety of at least 1.5 as demonstrated in Appendix C.

To maintain long-term stability of the backfill, the fill should be kept as dry as possible by means of subsurface drains. Transverse trench drains, as shown on typical drawing MVP-38, will be installed at 100-foot intervals throughout JNF Priority Site #2.

A thin residuum overburden mantle overlies bedrock in the vicinity of the JNF Priority Site #2, such that Mountain Valley anticipates the proposed pipeline trench will be installed in bedrock (if practical). In the unlikely event of a slope failure, the thin unconsolidated mantle would release parallel to the pipeline and trench axes (i.e., downslope) and there would be no anticipated effect to the bedrock hosting the pipeline.

2.2.7 Seeps and Springs

As the presence of seeps/springs encountered in the pipeline trench or temporary construction excavation will not be known until the trench is excavated, their location and extent cannot be determined at this time. At JNF Priority Site #2, seepage (if any is encountered) will be captured by daylight drains behind the trench breakers, as shown on typical drawing MVP-35, or with transverse trench drains as shown on typical drawing MVP-35. These drains will outlet to energy dissipation devices at the right-of-way ground surface. Trench breaker locations are shown on the E&SCP.

2.3 Mitigation Measures

Overall best management practices include:

- controlling surface runoff from the limit of disturbance and the reclaimed construction area to prevent direct flow into exposed debris flow or colluvial deposit;
- intercepting and controlling subsurface drainage from the excavation during construction and post-construction to prevent subsurface infiltration into the underlying debris flow or colluvial deposit;
- constructing in a timely fashion to reduce the amount of time when the limit of disturbance is exposed to the elements and not under final grade.
- and embedding the pipeline completely with in the bedrock trench, as practical.

Subsurface conditions observed during construction may dictate the use of enhanced mitigation measures. Site-specific observations made by the Mountain Valley landslide inspection team during construction may result in the team's recommendation for deployment of additional specific mitigation measures, which consider potential native ground movement around or below the ROW, disturbed temporary ground surface movement from initial grading and subsequent construction work and finished and restored ROW surface.

Based on field observations during construction, Mountain Valley may implement slope breakers, water bars, additional grading, French drains, armored slopes and/or ditches as enhanced drainage control measures to promote slope stability. Mountain Valley does not anticipate that structures will be required to stabilize bedrock within the trench excavation, or adjacent native soils or colluvium, however highwall/steep slope revetments or geogrid may be implemented to increase the stability of backfilled areas if soils do not exhibit the strength parameters modeled herein.

2.4 Post-Construction Monitoring and Intervention

See the discussion on post-construction monitoring and potential for intervention for the JNF Priority Sites that is presented in the last section of this document. Slope monitoring is a critical element of postconstruction operations of the pipeline and the recommended procedures (including potential reclamation measures) are applicable to all of the JNF Priority Sites.

3.0 JNF Priority Site #3

Coordinates: (37.401887, -80.689491) to (37.400977, -80.687575)

3.1 Site Description and Geology

This site is located on the southeast slope of Peters Mountain, downslope from the bore pit from approximately MP 196.4 to 196.55 as shown on the October 2016 Proposed Route.

Slopes within the temporary right of way range from 26 to 51 percent, and are generally steeper at the northern portion of the site near the bore pit. As shown on the plan view slope map of Figure 12, the pipeline route runs generally east-west and slightly sidehill upon exiting the bore pit and then turns south, where the ground surface slopes gently.

A profile of the site is shown on Figure 13. The pipeline will be approximately three feet below grade. The trench will be backfilled with select backfill, which will be shaker bucket material from the native soil and rock. Cross section 3A is shown on Figures 14, 15, and 16, depicting the anticipated extent of trenching and stockpiled material before, during, and after construction in the sidehill portion of JNF

Priority Site #3. Cross Sections 3-1, 3-2, 2-3, and 2-4 are depicted on Figures 42 and 43. These cross sections depict construction-phase conditions and include the locations of trees left in place to create an undulating right of way edge.

According to Rader and Gathright (1986) and Schultz and Stanley (2001) the geology in the general vicinity of the JNF Priority Site #3 vicinity is highly folded and thrust-faulted sedimentary bedrock. Underlying the site is the Silurian age Rose Hill Formation (red shales, mudstone, fine to medium sandstones), striking northeast-southwest with a moderate southeast dip of (generally 30°). North of the JNF Priority Site #3 the slope becomes steeper as it ascends to the ridgeline (i.e., thin soil mantle over weather-resistant bedrock outcrop with southeast dip). Downslope from the site, a large colluvial deposit is mapped (Schultz and Stanley, 2001), and observed in the field to be predominantly comprised of Rose Hill bedrock float that has weathered and sloughed from the outcrop on the topographically higher ridge. The colluvial overburden obscures bedrock outcrop on the slope at JNF Priority Site #3.

Photo 8: Rose Hill sandstone outcrop on ridge top north of the JNF Priority Site #3, dipping to the south (view to northeast)

Photo 9: Rose Hill sandstone outcrop on ridge top north of the JNF Priority Site #3, dipping to the south (view to the southwest)

Photo 10: Slope approximately 800 feet south of the ridge line

Photo 11: Colluvial deposit float (predominantly Rose Hill sandstone) at ground surface in the near vicinity of the JNF Priority Site #3 (view is to the west toward the upslope ridgeline)

The exhibit presented below was excerpted from Rader and Gathright (1986) showing the mapped geology of the Mystery Ridge area of Giles County, Virginia (encompassing JNF Priority Sites #1, #4, #3 and #5) and is intended to highlight the following discussion.

The yellow ellipse in the image above demarks the general area of the proposed alignment (not shown). The mapped locations of three splay faults of the Narrows thrust fault, and the fault itself, are mapped downslope (southeast) of JNF Priority Site #3. The fault zone is no longer active as the tectonic processes that led to thrust faulting are no longer active on the eastern margin of North America. However, the remnant fault zone may have some measure of effect on surface and groundwater flow rate and direction,

and may also be comprised of relatively weak brecciated bedrock. Also, the proposed alignment in this area passes over and near colluvial deposits, which are indicative of ancient (Pleistocene) mass movement.

In general, on steep slopes on JNF property, regardless of the specific geologic conditions, Mountain Valley recognizes that a key factor in maintaining slope stability is to control surface and subsurface water flow such that saturated soil and overburden conditions do not occur. Mountain Valley will take all appropriate actions during construction and after reclamation to manage surface and subsurface water to prevent saturated conditions on native and engineered slopes. Caution will be used to avoid reactivation of unstable deposits, and appropriate management of surface and subsurface drainage is crucial. The extent and character of the breccia zones, if observable at the ground surface, will be investigated by the landslide inspection team during initial land clearing and grubbing, and appropriate recommendations made to ensure construction stability and long-term pipeline integrity.

3.2 Potential Slope Failure Hazards

At this site, potential slope failure hazards that were considered included rock failure, debris flow, remobilization of colluvial deposits, shallow failures of the stockpiled trench/topsoil, slope failures subjacent to stockpiles, failure of temporary slopes created during construction, post-construction erosion of the reclaimed right of way, shallow sloughing failures of the trench backfill, and water intrusion from seeps and springs encountered in the trench.

Stream S-KL24 is located immediately southwest of the temporary LOD and could be impacted in the event of a failure.

These hazards and associated mitigation and avoidance strategies are discussed in detail below.

3.2.1 Rock Failure

Rock-block failure involves gravity-induced movement of large, relatively intact blocks of bedrock on steep slopes. The bedrock mass is typically a complex geological body resulting from variable lithology, tectonic stresses and weathering that lead to differential loading and unloading. Rock-block failures typically occur where stronger bedrock units transition to weaker or weathered units and become undercut. Rock falls or topples entail abrupt movements of bedrock mass or boulders that detach along discontinuities (fractures, joints, bedding planes) or the forward rotation of a unit or units about some pivotal point. Movement occurs by free-fall, bouncing, and rolling. Falls are strongly influenced by gravity, mechanical weathering, and the presence of interstitial water. Field reconnaissance of the JNF Priority Site #3 did not reveal conditions that would lead to potential rock block failure. Bedrock is not

exposed as over-steepened cliffs or ledges, is covered by soil overburden, and is likely stable in-place. Therefore, based on field observations of the JNF Priority Site #3 and planned construction activities, Mountain Valley considers the potential for rock failure to be so remote as to be negligible. No mitigation measures for rock failure are anticipated at JNF Priority Site #3.

3.2.2 Debris Flow / Colluvial Deposit

Debris flows are generally considered to be high-energy, rapid downslope movement of earth material that can entrain trees and other large objects in the flow path. A debris flow differs from rock-block slide in that there are no well-defined blocks moving along shear surfaces. Instead, the mass flows downhill, with shear strains present everywhere. Debris flows generally occur during intense precipitation events, and travel rapidly downslope along existing drainage channels or stream valleys, transporting and depositing mud, sand, gravel, and boulders where the slope gradient flattens. Multiple debris flows may coalesce into a central channel downslope from the points of initiation.

Colluvial deposits observed in the vicinity of the JNF Priority Site #3 may be derived from past debris flow(s), or other forms of mass wasting. However, debris flows are grouped with colluvial deposits for this analysis because pipeline construction and boring within, or in the vicinity of an observed colluvial deposit entails similar precautions to that for a debris flow.

Major controls on the potential to initiate a debris flow include topographic gradient and orientation of the slope, bedrock structure, and the accumulation of historic debris flows in topographic drainage features that concentrate surface and subsurface water during intense precipitation events. As noted above, pipeline construction in the vicinity of the JNF Priority Site #3 will be as much as 10 feet below grade. Field observations of the JNF Priority Site #3 suggest that pipeline construction will possibly remain within the colluvial deposits, but may encounter the upper reaches of shallow, stable bedrock. Topographic and bedrock conditions are likely not susceptible to generating a new debris flow at the JNF Priority #3 site. However, colluvial deposit(s) observed at, and in the near vicinity of, the site (as described above), coupled with the potential for extreme precipitation events, warrant consideration for construction, boring and long-term operation of the pipeline.

Slope Stability and Pipeline Integrity Analyses

Existing slope stability at the JNF Priority Site #3 was evaluated by establishing safety factors using a numerical model with input from field observations, probabilistic analysis of material properties and analyst experience. Slope failure risk analysis was approximated using the peer-reviewed slope stability program SLIDE (RocScience, Inc.). This model incorporates Bishop, Janbu and Spencer methods, generates circular, non-circular, and optimized shaped failure planes with seismic and boundary loads.

Observations of historical slope failures in other areas suggest that the likely slip plane will occur at the overburden-bedrock interface resembling an infinite slope failure. However, the depth of the slip surface within the colluvium material has a minimal effect on the Factor of Safety (FoS) (i.e., difference of less than 0.05). Therefore, the model simulates a failure surface near the overburden-bedrock interface to represent a failure with an adverse effect and not shallow, surficial sloughs.

A probabilistic model was applied to the colluvial soil shear strength (friction angle) and unit weight using highest and lowest conceivable values (Duncan, 2000). Stability analyses were run for slope angles ranging from 15% (9 degrees) to 76% (37 degrees), which bracket the range of existing slopes observed at and near the JNF Priority Site #3. Modeling also accounted for saturated conditions and seismic loading (0.16 g; see Mountain Valley Pipeline Resource Report #6, seismic hazards analysis). Slope stability model output is provided in Appendix C. Table C-1 in Appendix C summarizes the full range of stability analysis results given the probabilistic analyses for input parameters soil density and friction angle, under increasing slope, saturated and unsaturated conditions, and with and without seismic loading. In summary from Table C-1, based on likely residual soil density and friction angle values, the existing native overburden slopes at JNF Priority Site #3 are stable (minimum FoS of 1.1) up to at least 65% (33 degrees) native slopes under unsaturated conditions with no seismic loading, and 45% (24 degrees) native slopes with seismic loading. The analysis results suggest the slopes are stable at an acceptable FoS under unsaturated conditions.

Under saturated conditions, risk for slope failure increases substantially. The model confirms what Mountain Valley has already accounted for in construction practices, that the largest effect on the FoS is soil saturation from groundwater intrusion, or surface water infiltration, to the colluvial deposit (i.e., as soils become saturated, stability decreases). As discussed, Mountain Valley is aware of the need to prevent accumulation of storm water during construction, permanently divert subsurface springs or seeps from the pipeline bedding and near vicinity if encountered during construction, and to properly grade and reclaim the ground surface in the limit of disturbance after construction. Preventing saturated conditions on these steep slope environments is a critical factor in maintaining slope stability. The project stormwater management plans and subsurface drains implemented during construction will address the issue of overburden saturation.

The analysis suggests there is minimal risk of ground displacement. From the perspective of pipeline integrity and safety, D. G. Honegger Consulting (2015) indicated that slope displacements parallel to the proposed alignment can be screened out as not representing a significant hazard if the length of pipeline exposed to ground displacement is less than 1,150 feet (Class 1 pipe) to 1,640 feet (Class 3 pipe) from the

34

top of the slope (screening approach assumes a relatively straight line with no connections or insulated joints in the screening distance). While Mountain Valley does not anticipate any slope failure to occur, it is even more unlikely that failure on the magnitude of 1,000's of feet will occur. Thus the effects of displacement on the pipeline have not been analyzed. As discussed later in this document, Mountain Valley will implement a post-construction slope monitoring program. If future monitoring observations suggest slope movement is occurring, Mountain Valley will take appropriate actions to stabilize the slope and will evaluate pipeline response to the nature and degree of observed ground displacement using the recommendations provided in PRCI (2009).

3.2.3 Soil Stockpile and Subjacent Slope Failure

Soil stockpiles will be compacted with tracked equipment. Excavation and backfilling will be completed as quickly as possible to minimize the duration of stockpiling. At JNF Priority Site #3, the contractor will install a temporary diversion, such as reinforced silt fence, to prevent rocks from rolling off of the ROW.

Mountain Valley completed additional slope stability and sensitivity analysis in February, 2018, that shows that no spoil materials should be stored on slopes exceeding 77 percent. Spoil materials resembling the strength parameters for USCS soil type GP should not be stockpiled on slopes exceeding 63 percent; spoil materials resembling the strength parameters for USCS soil type GC should not be stockpiled on slopes exceeding 77 percent. Supporting slope stability analyses are included in Appendix C. A slope map depicting the slope conditions discussed above is included as Figure 50. No slopes exceeding 63 percent exist at JNF Priority Site #3.

Colluvial deposits were observed in the flatter portions of the site. Stability of the native material underlying spoil stockpiles is of concern. The spoil will be spread out across the workspace to the extent practicable to avoid overloading the in-situ colluvial soils. Stockpiles will be compacted with tracked equipment to prevent water infiltration and saturation of the material and thus minimize the weight of the stockpiled soil.

A geologist from the landslide inspection team deployed by Mountain Valley during construction will evaluate the subgrade to determine whether or not it is appropriate to stockpile soils in the vicinity of the colluvial deposit. The exact thickness of the colluvial deposit will not be fully determined until excavation is initiated, but as previously described, as colluvial debris generally follow ravines and drainage paths and the pipeline ROW is located on a ridge, it is unlikely that the colluvial deposit is extremely thick in the workspace area. Therefore, soils may be sufficiently thin that instability due to stockpiled material is not a concern. If the colluvial deposit is well-consolidated and relatively dry, material may be stored on top of it, at the discretion of the geologist. If colluvial deposits exceed about

35
five feet, spoil stockpiles will be moved up or downslope to a more stable area to avoid overloading the colluvial deposit and initiating a failure.

3.2.4 Temporary Cut Failures

Cut slopes created during construction at JNF Priority Site #3 may approach 10 feet in height and are anticipated to be cut into rock. Cut slopes will not exceed the maximum safe angle per OSHA standards for the type of material being excavated, and as such are expected to be stable during construction. As any cuts made temporarily during construction will be reclaimed with native material (buttressing the cut slope) placed to original contours as practicable, cut slopes are expected to be stable in the long term.

3.2.5 Erosion

Erosion hazards will be mitigated by following the project Erosion and Sediment Control Plan (E&SCP). Refer to the E&SCP for details.

3.2.6 Trench Backfill and Reclaimed Sideslope Failures

The pipeline trench will be provided with trench breakers at locations specified in the project E&SCP. These trench breakers will act as gravity retaining walls within the trench to hold the backfill in place during construction and will slow the velocity of water running through the trench, preventing subsurface erosion. Every third trench breaker at this location will be provided with daylight drains, as shown on typical drawing MVP-35, discharging water building up in the trench to water dissipation devices at the ground surface. All trench breakers not provided with daylight drains will be provided with pass-through drains as shown on typical drawing MVP-43.

Trench backfill is anticipated to be stable with a factor of safety of at least 1.5 as demonstrated in Appendix C.

Through the sidehill portion of JNF Priority Site #3, the excavated material will be replaced in compacted lifts not exceeding 12 inches in thickness. The stability of the reclaimed slope was modeled using GSTABL7 software. Slope stability analysis presented in Appendix C show that the backfill is stable with a factor of safety of at least 1.5. The landslide inspection team will evaluate this area during reclamation and may prescribe the use of geogrid (as shown on typical drawing MVP-42) to further stabilize areas of the hillside if the excavated and replaced material does not demonstrate the strength parameters modeled herein.

To maintain long-term stability of the backfill, the fill should be kept as dry as possible by means of subsurface drains. Transverse trench drains, as shown on typical drawing MVP-38, will be installed at 100-foot intervals throughout JNF Priority Site #3.

3.2.7 Seeps and Springs

As the presence of seeps/springs encountered in the pipeline trench or temporary construction excavation will not be known until the trench is excavated, their location and extent cannot be determined at this time. At JNF Priority Site #3, seepage (if any is encountered) will be captured by daylight drains behind the trench breakers, as shown on typical drawing MVP-35, or with transverse trench drains as shown on typical drawing MVP-35. These drains will outlet to energy dissipation devices at the right-of-way ground surface. Trench breaker locations are shown on the E&SCP.

3.3 Bore Pit

It should be noted that stability of the bore pit is not considered herein. Temporary shoring will be developed by the bore contractor to all applicable safety standards to protect both the open bore pit and the stockpiled spoil material excavated from the bore pit. The landslide inspection team will evaluate the site to determine if any mitigation measures, in addition to those proposed by the contractor, are necessary.

3.4 Mitigation Measures

Overall best management practices include:

- controlling surface runoff from the limit of disturbance and the reclaimed construction area to prevent direct flow into exposed debris flow or colluvial deposit;
- intercepting and controlling subsurface drainage from the excavation during construction and post-construction to prevent subsurface infiltration into the underlying debris flow or colluvial deposit;
- constructing in a timely fashion to reduce the amount of time when the limit of disturbance is exposed to the elements and not under final grade;
- and embedding the pipeline completely with in the bedrock trench, if practical.

Subsurface conditions observed during construction may dictate the use of enhanced mitigation measures. Site-specific observations made by the Mountain Valley landslide inspection team during construction may result in the team's recommendation for deployment of additional specific mitigation measures, which consider potential native ground movement around or below the ROW, disturbed temporary ground surface movement from initial grading and subsequent construction work and finished and restored ROW surface. Based on field observations during construction, Mountain Valley may implement slope breakers, water bars, additional grading, French drains, armored slopes and/or ditches as enhanced drainage control measures to promote slope stability. Mountain Valley does not anticipate that structures will be required to stabilize bedrock within the trench excavation, or adjacent native soils or colluvium, however highwall/steep slope revetments or geogrid may be implemented to increase the stability of backfilled areas if soils do not exhibit the strength parameters modeled herein.

3.5 Post-Construction Monitoring and Intervention

See the discussion on post-construction monitoring and potential for intervention for the JNF Priority Sites that is presented in the last section of this document. Slope monitoring is a critical element of postconstruction operations of the pipeline and the recommended procedures (including potential reclamation measures) are applicable to all of the JNF Priority Sites.

4.0 JNF Priority Site #4

Coordinates: (37.387563, -80.682672) to (37.38578, -80.681428)

4.1 Site Description and Geology

This site is located on the steepest slopes downslope from the bore pit on the south side of Peters Mountain from approximately MP 197.75 to 197.95 on the October 2016 Proposed Route. This portion of the right of way is located at the southern extent of Mystery Ridge.

Slopes along this portion of the right of way range from seven to 70 percent, and are generally steeper in the vicinity of MP 198.0. As shown on the plan view slope map of Figure 17, the pipeline in this area parallels and then crosses Mystery Ridge Road on a gentle sidehill, then turns southeast.

A profile of the site is shown on Figure 18. The pipeline will be up to approximately seven feet below grade, with the bottom of the pipeline trench located approximately eleven feet below grade. The trench will be backfilled with select backfill, which will be shaker bucket material from the native soil and rock. Cross section 4A is shown on Figures 19, 20, and 21, and cross section 4B is shown on Figures 22, 23, and 24, depicting the anticipated extent of trenching and stockpiled material before, during, and after construction. Figure 44 depicts the construction-phase geometry of cross section 4-1, including trees left to create the undulating right of way edge.

According to Rader and Gathright (1986) and Schultz and Stanley (2001) the geology of the JNF Priority Site #4 vicinity is highly folded and thrust-faulted sedimentary bedrock (typical of the Valley and Ridge geologic province of Virginia). Bedrock underlying the JNF Priority #4 site is mapped to be northeast striking and moderately dipping (generally 30-40°) upper Silurian age undivided Tonoloway Limestone and Keefer Sandstone. A splay fault of the Narrows thrust fault is mapped downslope of the JNF Priority Site #4, as an unconformable contact between the Tonoloway and Keefer bedrock and Silurian age Rose Hill sandstone. JNF Priority Site #4 is located approximately 1,000 feet upslope from JNF Priority Site #1 (downslope and older bedrock was described previously for the JNF Priority Site #1). Bedrock outcrops of the Tonoloway Limestone or Keefer Sandstone were not observed during field reconnaissance of the JNF Priority Site #4.

4.2 Potential Slope Failure Hazards

At this site, potential slope failure hazards that were considered included rock failure, debris flow, remobilization of colluvial deposits, shallow failures of the stockpiled trench/topsoil, slope failures subjacent to stockpiles, failure of temporary slopes created during construction, post-construction erosion

of the reclaimed right of way, shallow sloughing failures of the trench backfill, and water intrusion from seeps and springs encountered in the trench.

No jurisdictional waters have been identified in the vicinity of JNF Priority Site 4.

These hazards and associated mitigation and avoidance strategies are discussed in detail below.

4.2.1 Rock Failure

Rock-block failure involves gravity-induced movement of large, relatively intact blocks of bedrock on steep slopes. The bedrock mass is typically a complex geological body resulting from variable lithology, tectonic stresses and weathering that lead to differential loading and unloading. Rock-block failures typically occur where stronger bedrock units transition to weaker or weathered units and become undercut. Rock falls or topples entail abrupt movements of bedrock mass or boulders that detach along discontinuities (fractures, joints, bedding planes) or the forward rotation of a unit or units about some pivotal point. Movement occurs by free-fall, bouncing, and rolling. Falls are strongly influenced by gravity, mechanical weathering, and the presence of interstitial water. Field reconnaissance of the JNF Priority Site #4 did not reveal conditions that would lead to potential rock block failure. Bedrock is not exposed as over-steepened cliffs or ledges, is covered by soil overburden, and is likely stable in-place. Therefore, based on field observations of the JNF Priority Site #4 and planned construction activities, Mountain Valley considers the potential for rock failure to be so remote as to be negligible. No mitigation measures for rock failure are prescribed at JNF Priority Site #4.

4.2.2 Unconsolidated Overburden Failure

Field reconnaissance of the JNF Priority Site #4 and vicinity revealed bedrock outcrops, thin soil mantle and no notable topographically overlying overburden or bedrock exposure, which indicate negligible potential for debris flow activation. Based on field observations, the residual overburden is less than 10 feet deep. As discussed above, the pipeline trench in the vicinity of JNF Priority Site #4 will be approximately 7 to 11 feet below grade, likely below the residual overburden and into the upper reaches of stable shallow bedrock.

Major controls on the potential to initiate a landslide (unconsolidated overburden failure) include topographic gradient and orientation of the slope, bedrock structure, and topographic drainage features that concentrate surface and subsurface water during intense precipitation events. Mountain Valley evaluated overburden observed (as described above) at the JNF Priority Site #4, coupled with the potential for extreme precipitation events, for consideration of failure risk during construction and longterm operation of the pipeline.

Slope Stability and Pipeline Integrity Analyses

Existing slope stability at the JNF Priority Site #4 was evaluated by establishing safety factors using a numerical model with input from field observations, probabilistic analysis of material properties and analyst experience. Slope failure risk analysis was approximated using the peer-reviewed slope stability program SLIDE (RocScience, Inc.). This model incorporates Bishop, Janbu and Spencer methods, generates circular, non-circular, and optimized shaped failure planes with seismic and boundary loads.

Observations of historical slope failures in other areas suggest that the likely slip plane will occur at the overburden-bedrock interface resembling an infinite slope failure. However, the depth of the slip surface within the colluvium material has a minimal effect on the Factor of Safety (FoS) (i.e., difference of less than 0.05). Therefore, the model simulates a failure surface near the overburden-bedrock interface to represent a failure with an adverse effect and not shallow, surficial sloughs.

A probabilistic model was applied to the colluvial soil shear strength (friction angle) and unit weight using highest and lowest conceivable values (Duncan, 2000). Stability analyses were run for slope angles ranging from 15% (9 degrees) to 76% (37 degrees). Modeling also accounted for saturated conditions and seismic loading (0.16 g; see Mountain Valley Pipeline Resource Report #6, seismic hazards analysis). Slope stability model output is provided in Appendix C. Table C-1 in Appendix C summarizes the full range of stability analysis results given the probabilistic analyses for input parameters soil density and friction angle, under increasing slope, saturated and unsaturated conditions, and with and without seismic loading.

In summary from Table C-1, based on likely residual soil density and friction angle values, the existing native overburden slopes at JNF Priority Site #4 are stable (minimum FoS of 1.1) up to at least 65% (33 degrees) native slopes under unsaturated conditions with no seismic loading, and 45% (24 degrees) native slopes with seismic loading. The analysis results suggest the slopes are stable at an acceptable FoS under unsaturated conditions, and given that the pipeline will be bedded in stable bedrock with negligible risk for slope failure under seismic loading.

Under saturated conditions, risk for slope failure increases substantially. The model confirms what Mountain Valley has already accounted for in construction practices, that the largest effect on the FoS is soil saturation from groundwater intrusion, or surface water infiltration, to the colluvial deposit (i.e., as soils become saturated, stability decreases). As discussed, Mountain Valley is aware of the need to prevent accumulation of storm water during construction, permanently divert subsurface springs or seeps from the pipeline bedding and near vicinity if encountered during construction, and to properly grade and reclaim the ground surface in the LOD after construction. Preventing saturated conditions on these steep

41

slope environments is a critical factor in maintaining slope stability. The project stormwater management plans and subsurface drains implemented during construction will address the issue of overburden saturation.

The analysis suggests there is minimal risk of ground displacement. From the perspective of pipeline integrity and safety, D. G. Honegger Consulting (2015) indicated that slope displacements parallel to the proposed alignment can be screened out as not representing a significant hazard if the length of pipeline exposed to ground displacement is less than 1,150 feet (Class 1 pipe) to 1,640 feet (Class 3 pipe) from the top of the slope (screening approach assumes a relatively straight line with no connections or insulated joints in the screening distance). While Mountain Valley does not anticipate any slope failure to occur, it is even more unlikely that failure on the magnitude of 1,000's of feet will occur. Thus the effects of displacement on the pipeline have not been analyzed. As discussed later in this document, Mountain Valley will implement a post-construction slope monitoring program. If future monitoring observations suggest slope movement is occurring, Mountain Valley will take appropriate actions to stabilize the slope and will evaluate pipeline response to the nature and degree of observed ground displacement using the recommendations provided in PRCI (2009).

4.2.3 Soil Stockpile and Subjacent Slope Failure

Soil stockpiles will be compacted with tracked equipment. Excavation and backfilling will be completed as quickly as possible to minimize the duration of stockpiling. At JNF Priority Site #4, the contractor will install a temporary backstop, such as reinforced silt fence, to prevent rocks from rolling/sliding off of the ROW.

Mountain Valley completed additional slope stability and sensitivity analysis in February, 2018, that shows that no spoil materials should be stored on slopes exceeding 77 percent. Spoil materials resembling the strength parameters for USCS soil type GP should not be stockpiled on slopes exceeding 63 percent; spoil materials resembling the strength parameters for USCS soil type GC should not be stockpiled on slopes exceeding 77 percent. Supporting slope stability analyses are included in Appendix C. A slope map depicting the slope conditions discussed above is included as Figure 51.

In areas of the ROW steeper than 63%, spoil will be evaluated by Mountain Valley's field geologist to determine which soil type it most closely resembles. If the spoil resembles the strength parameters for GP material, it will be moved to a flatter area temporarily during construction, then moved back during final restoration. No slopes exceeding 70 percent exist at JNF Priority Site #4, thus no areas are excluded from spoil storage.

Field observations revealed a thin soil mantle and spoil stockpiles will be stored on bedrock. Thus, overloading the subjacent slope at JNF Priority Site #4 is not anticipated to occur and does not present a technical concern for construction in this area. Temporary spoil stockpiles stored on rock will be internally stable with a factor of safety of at least 1.2 as demonstrated in Appendix C.

4.2.4 Temporary Cut Failures

Cut slopes created during construction at JNF Priority Site #4 may approach 15 feet in height and are anticipated to be cut into rock. Cut slopes will not exceed the maximum safe angle per OSHA standards for the type of material being excavated, and as such are expected to be stable during construction. As any cuts made temporarily during construction will be reclaimed with native material (buttressing the cut slope) placed to original contours as practicable, cut slopes are expected to be stable in the long term.

4.2.5 Erosion

Erosion hazards will be mitigated by following the project Erosion and Sediment Control Plan (E&SCP). Refer to the E&SCP for details.

4.2.6 Trench Backfill and Reclaimed Sideslope Failures

The pipeline trench will be provided with trench breakers at locations specified in the project E&SCP. These trench breakers will act as gravity retaining walls within the trench to hold the backfill in place during construction and will slow the velocity of water running through the trench, preventing subsurface erosion. Every third trench breaker at this location will be provided with daylight drains, as shown on typical drawing MVP-35, discharging water building up in the trench to water dissipation devices at the ground surface. All trench breakers not provided with daylight drains will be provided with pass-through drains as shown on typical drawing MVP-43.

Trench backfill is anticipated to be stable with a factor of safety of at least 1.5 as demonstrated in Appendix C.

The excavated material will be replaced in compacted lifts not exceeding 12 inches in thickness. The stability of the reclaimed slope was modeled using GSTABL7 software. Slope stability analysis presented in Appendix C show that the backfill is stable with a factor of safety of at least 1.5. The landslide inspection team will evaluate this area during reclamation and may prescribe the use of geogrid (as shown on typical drawing MVP-42) to further stabilize areas of the hillside if the excavated and replaced material does not demonstrate the strength parameters modeled herein.

To maintain long-term stability of the backfill, the fill should be kept as dry as possible by means of subsurface drains. Transverse trench drains, as shown on typical drawing MVP-38, will be installed at 100-foot intervals throughout JNF Priority Site #4.

In this area, the pipeline should be fully embedded in the bedrock trench to prevent damage to the pipeline in the unanticipated event of a slope failure.

4.2.7 Seeps and Springs

As the presence of seeps/springs encountered in the pipeline trench or temporary construction excavation will not be known until the trench is excavated, their location and extent cannot be determined at this time. At JNF Priority Site #4, seepage (if any is encountered) will be captured by daylight drains behind the trench breakers, as shown on typical drawing MVP-35, or with transverse trench drains as shown on typical drawing MVP-35. These drains will outlet to energy dissipation devices at the right-of-way ground surface. Trench breaker locations are shown on the E&SCP.

4.3 Mitigation Measures

Overall best management practices include:

- controlling surface runoff from the limit of disturbance and the reclaimed construction area to prevent direct flow into exposed debris flow or colluvial deposit;
- intercepting and controlling subsurface drainage from the excavation during construction and post-construction to prevent subsurface infiltration into the underlying debris flow or colluvial deposit;
- constructing in a timely fashion to reduce the amount of time when the limit of disturbance is exposed to the elements and not under final grade;
- and embedding the pipeline completely within the bedrock trench, as practicable.

Subsurface conditions observed during construction may dictate the use of enhanced mitigation measures. Site-specific observations made by the Mountain Valley landslide inspection team during construction may result in the team's recommendation for deployment of additional specific mitigation measures, which consider potential native ground movement around or below the ROW, disturbed temporary ground surface movement from initial grading and subsequent construction work and finished and restored ROW surface.

Based on field observations during construction, Mountain Valley may implement slope breakers, water bars, additional grading, French drains, armored slopes and/or ditches as enhanced drainage control

measures to promote slope stability. Mountain Valley does not anticipate that structures will be required to stabilize bedrock within the trench excavation, or adjacent native soils or colluvium, however highwall/steep slope revetments or geogrid may be implemented to increase the stability of backfilled areas if soils do not exhibit the strength parameters modeled herein.

4.4 Post-Construction Monitoring and Intervention

See the discussion on post-construction monitoring and potential for intervention for the JNF Priority Sites that is presented in the last section of this document. Slope monitoring is a critical element of postconstruction operations of the pipeline and the recommended procedures (including potential reclamation measures) are applicable to all of the JNF Priority Sites.

5.0 JNF Priority Site #5

Coordinates: (37.406782, -80.693608) to (37.403354, -80.690408)

5.1 Site Description and Geology

This site is located on the northwest side of Peters Mountain downslope from the bore pit, mostly subjacent to US Forest Service property on private lands, from approximately MP 196.0 to 196.3 on the October 2016 Proposed Route.

Slopes along this portion of the right of way range from 13 to 66 percent, and are generally steeper at the southern portion of the site, approaching the crest of Peters Mountain. The ridge is relatively wide with gentle side slopes. As shown on the plan view slope map of Figure 25, the pipeline in this area follows a wide ridge with gentle side slopes up Peters Mountain.

A profile of the site is shown on Figure 26. The pipeline will be approximately three feet below grade, with the bottom of the pipeline trench located approximately seven feet below grade. The trench will be backfilled with select backfill, which will be shaker bucket material from the native soil and rock. Cross section 5A is shown on Figures 27, 28, and 29, depicting the anticipated extent of trenching and stockpiled material before, during, and after construction. Figures 45 and 46 depict the construction-phase geometry of cross sections 4-1 and 4-2, including trees left to create the undulating right of way edge.

While separated by less than approximately 1,500 feet, the JNF Priority Site #3 is located in Virginia while the JNF Priority Site #5 is in West Virginia. Geologic mapping of Monroe County, West Virginia is not as well developed as that for Virginia. According to the Geologic and Economic Map of Monroe County, West Virginia (1925), the JNF Priority Site #5, located on the north-northwest facing slope of Peters Mountain within approximately 800 feet of the ridgeline, is underlain by the upper Ordovician Age Red Medina Formation and Martinsburg Series, which correspond to the Juniata Formation and undivided Reedsville Shale / Trenton Limestone, respectively, in Virginia. Closer to the ridge line, the White Medina and Red Medina Formation (corresponding to the Silurian Tuscarora and Rose Hill Formations in Virginia) form a series of steep slope benches. Consistent with the conditions observed at JNF Priority Site #3, bedrock strike is to the northeast (parallel to the Peters Mountain ridgeline), dipping to the south-southeast toward Virginia. In a general but not exact analog, JNF Priority Site #5 is consistent with JNF Priority Site #2, where the area is located north-northwest and downslope from the ridge line on bedrock that dips back into the mountain to the south-southeast.

Photo 12: White Medina (Tuscarora) sandstone forming ridgeline, dipping south-southeast back into the ridge (view is to the north)

Photo 13: Downslope to the north-northwest from the ridgeline near where slopes are reduced toward JNF Priority Site #5 (below bore pit), underlain by Martinsburg Series bedrock (view is to the west-southwest)

As noted above, the JNF Priority Site #5 is located downslope from the ridge line and downslope from the bore pit. This site is analogous to JNF Priority Site #2, with relatively thin residual soil overburden overlying clastic sedimentary bedrock.

5.2 Potential Slope Failure Hazards

At this site, potential slope failure hazards that were considered included rock failure, debris flow, remobilization of colluvial deposits, shallow failures of the stockpiled trench/topsoil, slope failures subjacent to stockpiles, failure of temporary slopes created during construction, post-construction erosion of the reclaimed right of way, shallow sloughing failures of the trench backfill, and water intrusion from seeps and springs encountered in the trench.

No jurisdictional waters have been identified in the vicinity of JNF Priority Site 5.

These hazards and associated mitigation and avoidance strategies are discussed in detail below.

5.2.1 Rock Failure

Rock-block failure involves gravity-induced movement of large, relatively intact blocks of bedrock on steep slopes. The bedrock mass is typically a complex geological body resulting from variable lithology, tectonic stresses and weathering that lead to differential loading and unloading. Rock-block failures typically occur where stronger bedrock units transition to weaker or weathered units and become undercut. Rock falls or topples entail abrupt movements of bedrock mass or boulders that detach along discontinuities (fractures, joints, bedding planes) or the forward rotation of a unit or units about some pivotal point. Movement occurs by free-fall, bouncing, and rolling. Falls are strongly influenced by gravity, mechanical weathering, and the presence of interstitial water. Field reconnaissance of the JNF Priority Site #5 did not reveal conditions that would lead to potential rock block failure. Bedrock is not exposed as over-steepened cliffs or ledges, is covered by soil overburden, and is likely stable in-place. Therefore, based on field observations of the JNF Priority Site #5 and planned construction activities, Mountain Valley considers the potential for rock failure to be so remote as to be negligible. No mitigation measures for rock failure are prescribed at JNF Priority Site #5.

5.2.2 Unconsolidated Overburden Failure

Field observations and geologic mapping indicate that the JNF Priority Site #5 is underlain by a residual soil mantle that overlies clastic sedimentary bedrock, generally similar to conditions observed at JNF Priority Site #2. As discussed above, the pipeline trench in the vicinity of JNF Priority Site #5 will be approximately seven feet below grade, likely within residual overburden and possibly upper reaches of stable shallow bedrock.

Major controls on the potential to initiate a landslide (unconsolidated overburden failure) include topographic gradient and orientation of the slope, bedrock structure, and topographic drainage features that concentrate surface and subsurface water during intense precipitation events. Mountain Valley evaluated overburden observed (as described above) at JNF Priority Site #5, coupled with the potential for extreme precipitation events, for consideration of failure risk during construction and long-term operation of the pipeline.

Slope Stability and Pipeline Integrity Analyses

Existing slope stability at the JNF Priority Site #5 was evaluated by establishing safety factors using a numerical model with input from field observations, probabilistic analysis of material properties and analyst experience. Slope failure risk analysis was approximated using the peer-reviewed slope stability

program SLIDE (RocScience, Inc.). This model incorporates Bishop, Janbu and Spencer methods, generates circular, non-circular, and optimized shaped failure planes with seismic and boundary loads.

Observations of historical slope failures in other areas suggest that the likely slip plane will occur at the overburden-bedrock interface resembling an infinite slope failure. However, the depth of the slip surface within the colluvium material has a minimal effect on the Factor of Safety (FoS) (i.e., difference of less than 0.05). Therefore, the model simulates a failure surface near the overburden-bedrock interface to represent a failure with an adverse effect and not shallow, surficial sloughs.

A probabilistic model was applied to the colluvial soil shear strength (friction angle) and unit weight using highest and lowest conceivable values (Duncan, 2000). Stability analyses were run for slope angles ranging from 15% (9 degrees) to 76% (37 degrees). Modeling also accounted for saturated conditions and seismic loading (0.16 g; see Mountain Valley Pipeline Resource Report #6, seismic hazards analysis). Slope stability model output is provided in Appendix C. Table C-1 in Appendix C summarizes the full range of stability analysis results given the probabilistic analyses for input parameters soil density and friction angle, under increasing slope, saturated and unsaturated conditions, and with and without seismic loading.

In summary from Table C-1, based on likely residual soil density and friction angle values, the existing native overburden slopes at JNF Priority Site #5 are stable (minimum FoS of 1.1) up to at least 65% (33 degrees) native slopes under unsaturated conditions with no seismic loading, and 45% (24 degrees) native slopes with seismic loading. The analysis results suggest that average slopes at JNF Priority Site #5 are stable at an acceptable FoS under unsaturated conditions.

Under saturated conditions, risk for slope failure increases substantially. The model confirms what Mountain Valley has already accounted for in construction practices, that the largest effect on the FoS is soil saturation from groundwater intrusion, or surface water infiltration, to the colluvial deposit (i.e., as soils become saturated, stability decreases). As discussed, Mountain Valley is aware of the need to prevent accumulation of storm water during construction, permanently divert subsurface springs or seeps from the pipeline bedding and near vicinity if encountered during construction, and to properly grade and reclaim the ground surface in the LOD after construction. Preventing saturated conditions on these steep slope environments is a critical factor in maintaining slope stability. The project stormwater management plans and subsurface drains implemented during construction will address the issue of overburden saturation. The analysis suggests there is minimal risk of ground displacement, thus the effects of displacement on the pipeline have not been analyzed. As discussed later in this document, Mountain Valley will implement a post-construction slope monitoring program. If future monitoring observations suggest slope movement is occurring, Mountain Valley will take appropriate actions to stabilize the slope and will evaluate pipeline response to the nature and degree of observed ground displacement using the recommendations provided in PRCI (2009).

5.2.3 Soil Stockpile and Subjacent Slope Failure

Soil stockpiles will be compacted with tracked equipment. Excavation and backfilling will be completed as quickly as possible to minimize the duration of stockpiling. At JNF Priority Site #5, the contractor will install a temporary backstop, such as reinforced silt fence, to prevent rocks from rolling/sliding off of the ROW.

Mountain Valley completed additional slope stability and sensitivity analysis in February, 2018, that shows that no spoil materials should be stored on slopes exceeding 77 percent. Spoil materials resembling the strength parameters for USCS soil type GP should not be stockpiled on slopes exceeding 63 percent; spoil materials resembling the strength parameters for USCS soil type GC should not be stockpiled on slopes exceeding 77 percent. Supporting slope stability analyses are included in Appendix C. A slope map depicting the slope conditions discussed above is included as Figure 52.

In areas of the ROW steeper than 63 percent, spoil will be evaluated by Mountain Valley's field geologist to determine which soil type it most closely resembles. If the spoil resembles the strength parameters for GP material, it will be moved to a flatter area temporarily during construction, then moved back during final restoration. No slopes exceeding 66 percent exist at JNF Priority Site #5, thus no areas are excluded from spoil storage.

Field observations revealed a thin soil mantle and spoil stockpiles will be stored on bedrock. Thus, overloading the subjacent slope at JNF Priority Site #5 is not anticipated to occur and does not present a technical concern for construction in this area. Temporary spoil stockpiles stored on rock will be internally stable with a factor of safety of at least 1.2 as demonstrated in Appendix C.

5.2.4 Temporary Cut Failures

Cut slopes created during construction at JNF Priority Site #5 are limited to the pipeline trench and associated side slopes. Cut slopes will not exceed the maximum safe angle per OSHA standards for the type of material being excavated. As any cuts made temporarily during construction will be reclaimed

with native material (buttressing the cut slope) placed to original contours as practicable, cut slopes are expected to be stable in the long term.

5.2.5 Erosion

Erosion hazards will be mitigated by following the project Erosion and Sediment Control Plan (E&SCP). Refer to the E&SCP for details.

5.2.6 Trench Backfill Failures

The pipeline trench will be provided with trench breakers at locations specified in the project E&SCP. These trench breakers will act as gravity retaining walls within the trench to hold the backfill in place during construction and will slow the velocity of water running through the trench, preventing subsurface erosion. Every third trench breaker at this location will be provided with daylight drains, as shown on typical drawing MVP-35, discharging water building up in the trench to water dissipation devices at the ground surface. All trench breakers not provided with daylight drains will be provided with pass-through drains as shown on typical drawing MVP-43. Trench backfill is anticipated to be stable with a factor of safety of at least 1.5 as demonstrated in the slope stability analysis in Appendix C.

5.2.7 Seeps and Springs

As the presence of seeps/springs encountered in the pipeline trench or temporary construction excavation will not be known until the trench is excavated, their location and extent cannot be determined at this time. At JNF Priority Site #5, seepage (if any is encountered) will be captured by daylight drains behind the trench breakers, as shown on typical drawing MVP-35, or with transverse trench drains as shown on typical drawing MVP-35. These drains will outlet to energy dissipation devices at the right-of-way ground surface. Trench breaker locations are shown on the E&SCP.

5.3 Bore Pit

It should be noted that stability of the bore pit is not considered herein. Temporary shoring will be developed by the bore contractor to all applicable safety standards to protect both the open bore pit and the stockpiled spoil material excavated from the bore pit. The landslide inspection team will evaluate the site to determine if any mitigation measures, in addition to those proposed by the contractor, are necessary.

5.4 Mitigation Measures

Overall best management practices include:

- controlling surface runoff from the limit of disturbance and the reclaimed construction area to prevent direct flow into exposed debris flow or colluvial deposit;
- intercepting and controlling subsurface drainage from the excavation during construction and post-construction to prevent subsurface infiltration into the underlying debris flow or colluvial deposit;
- and constructing in a timely fashion to reduce the amount of time when the limit of disturbance is exposed to the elements and not under final grade.

Subsurface conditions observed during construction may dictate the use of enhanced mitigation measures. Site-specific observations made by the Mountain Valley landslide inspection team during construction may result in the team's recommendation for deployment of additional specific mitigation measures, which consider potential native ground movement around or below the ROW, disturbed temporary ground surface movement from initial grading and subsequent construction work and finished and restored ROW surface.

Based on field observations during construction, Mountain Valley may implement slope breakers, water bars, additional grading, French drains, armored slopes and/or ditches as enhanced drainage control measures to promote slope stability. Mountain Valley does not anticipate that structures will be required to stabilize bedrock within the trench excavation, or adjacent native soils or colluvium, however highwall/steep slope revetments or geogrid may be implemented to increase the stability of backfilled areas if soils do not exhibit the strength parameters modeled herein.

5.5 Post-Construction Monitoring and Intervention

See the discussion on post-construction monitoring and potential for intervention for the JNF Priority Sites that is presented in the last section of this document. Slope monitoring is a critical element of postconstruction operations of the pipeline and the recommended procedures (including potential reclamation measures) are applicable to all of the JNF Priority Sites.

6.0 JNF Priority Site #6

Coordinates: (37.324447, -80.415421) to (37.320149, -80.412061)

6.1 Site Description and Geology

This site is located near the crest of Sinking Creek Mountain from approximately MP 218.5 to 218.9 on the October 2016 Proposed Route.

Slopes along this portion of the right of way range from nearly flat to 81 percent, and are generally steepest approaching the crest of Sinking Creek Mountain. As shown on the plan view slope map of Figure 30, the pipeline follows a ridge just downslope of the mountain's crest.

A profile of the site is shown on Figure 31. The pipeline will be approximately three feet below grade, with the bottom of the pipeline trench located approximately seven feet below grade. The trench will be backfilled with select backfill, which will be shaker bucket material from the native soil and rock. Cross section 6A is shown on Figures 32, 33, and 34, depicting the anticipated extent of trenching and stockpiled material before, during, and after construction. Figure 47 depicts the construction-phase geometry of cross section 6-1, including trees left to create the undulating right of way edge.

According to Rader and Gathright (1986) the geology of the JNF Priority Site #6 vicinity is highly folded and thrust-faulted sedimentary bedrock (typical of the Valley and Ridge geologic province of Virginia). Bedrock underlying the JNF Priority #6 site is mapped as northeast striking and moderately-to-steeply dipping (generally 45-50°) Silurian age Rose Hill Formation conformably in contact with the older Tuscarora Formation (red shales, mudstone, fine to medium red to gray to white sandstones and quartzite). Both the Rose Hill and Tuscarora Formations were observed to outcrop on the ridge line in different exposures (see Photo 15 and Photo 16, below). The older Tuscarora Formation is conformably in contact with the Rose Hill downslope to the south-southeast.

Photo 14: Tuscarora Formation sandstone observed to outcrop at the ridge line (view is to the southwest)

Photo 15: Further to the southwest, the Rose Hill Formation sandstones outcrop at the ridge line (view is to the southwest)

Field reconnaissance of the JNF Priority Site #6 confirmed a near-horizontal portion of the slope within approximately 800 feet downslope (south) of the ridge line that corresponds to the rock-block slump, and a steep slope leading up to the ridge line (north-northwest) that is primarily the result of a release of the rock-block when it slumped.

Photo 17: View of the shallow slope apparently formed by rock-block slump, viewed toward the ridge line that is somewhat visible by trees in background defined by skyline approximately 800 feet to the west (view is to the west-southwest)

Photo 16: South extent of the shallow slope formed by an apparent rock-block slump downslope from the ridge line (view is to the northeast)

The rock-block slump is mapped as Tuscarora Formation sandstone by Schultz (1993). See the exhibit presented below, excerpted from Schultz (1993), showing the proposed alignment as the red dashed line, crossing the approximately 1,500 by 500 feet ancient rock-block slump (Stk) on the southeast slope of Sinking Creek mountain.

Continuing downslope, the pipeline is mapped as crossing colluvium (Qcr in the exhibit above), derived from the Rose Hill Formation and consisting of debris transported downslope from the ridgeline and rockblock slide. Field reconnaissance revealed hummocky terrain, abundant Rose Hill and Tuscarora float at the ground surface and a well graded agglomeration of fine-to-coarse sand, pebbles, cobbles and boulders of Rose Hill and Tuscarora (observed in tree-fall root balls) that are characteristic of the ancient debris flow (see Photo 19, below).

Photo 17: Hummocky ground with variable size float (boulders, cobbles, pebbles, sand, silt) that corresponds to a mapped debris flow downslope (to the south-southeast) from the rock-block slump feature (view is to the south-southeast)

6.2 Potential Slope Failure Hazards

At this site, potential slope failure hazards that were considered included continued rock-block slumping, debris flow, remobilization of colluvial deposits, shallow failures of the stockpiled trench/topsoil, slope failures subjacent to stockpiles, failure of temporary slopes created during construction, post-construction erosion of the reclaimed right of way, shallow sloughing failures of the trench backfill, and water intrusion from seeps and springs encountered in the trench.

Stream S-PP22 has been delineated near the southern portion of the site.

These hazards and associated mitigation and avoidance strategies are discussed in detail below.

6.2.1 Rock Failure

Rock-block failure involves gravity-induced movement of relatively intact blocks of bedrock overlying weaker or weathered units on critical slopes. The bedrock mass is typically a complex geological body resulting from variable lithology, tectonic stresses and weathering that lead to differential loading and unloading. Rock-block failure is commonly controlled by discontinuities or failure planes (e.g., bedding, folds, joints, and faults) within the rock mass. The distribution of discontinuities affects the mechanical strength of the rock mass (i.e., bonding force and friction coefficient). Trigger events for rock falls are primarily associated with pore pressure effects from sustained long-duration or short-duration intense precipitation events, and freeze-thaw weathering (Schultz and Southworth, 1987, 1989; Wieczorek and Snyder, 2009). Some researchers postulate that seismic shaking may trigger slope failure, but no direct

evidence is available to support this suggestion. D.G. Honegger Consulting (2015) presents an analysis and recommendations for mitigating seismic-induced risks to the pipeline.

Field reconnaissance of the JNF Priority Site #6 reveal conditions that confirm the presence of an ancient rock-block failure structure. Pipeline construction in the vicinity of the slumped rock-block will entail trenching to approximately seven feet below grade and will likely remain within overlying residual overburden or possibly encounter the upper reaches of the weathered bedrock. The particular rock-block near JNF Priority Site #6 is approximately 1,500 feet by 500 feet in dimension, and these blocks are typically dozens of feet think. It is not anticipated that pipeline construction will affect the stability of the rock-block, given that failure conditions have already occurred (in ancient times) and the rock-block is likely stable at its current repose. Therefore, Mountain Valley considers the risk for activation of the rock-block to be negligible, and no further analysis was conducted.

Upslope of the rock-block, in the vicinity of JNF Priority Site #6, pipeline construction will encounter the Silurian Age ridge-forming sandstones (Rose Hill and Tuscarora Formations). As noted, pipeline construction at the ridge line will likely only be seven feet below grade, and Mountain Valley anticipates being able to rip these jointed, dipping bedrock exposures. Under this relatively controlled construction practice, Mountain Valley does not anticipate increased risks for rock fall or tumble at this location.

6.2.2 Debris Flow / Colluvial Deposit

Schultz (1993) mapped a debris flow downslope (south-southwest) of the JNF Priority Site #6. Debris flows are generally considered to be high-energy, rapid downslope movement of earth material that can entrain trees and other large objects in the flow path. A debris flow differs from rock-block slide in that there are no well-defined blocks moving along shear surfaces. Instead, the mass flows downhill, with shear strains present everywhere. Debris flows generally occur during intense precipitation events, and travel rapidly downslope along existing drainage channels or stream valleys, transporting and depositing mud, sand, gravel, and boulders where the slope gradient flattens. Multiple debris flows may coalesce into a central channel downslope from the points of initiation.

Colluvial deposits are also mapped downslope of the JNF Priority Site #6, which may be derived from past debris flow(s), or other forms of mass wasting. Debris flows are grouped with colluvial deposits for this analysis because pipeline construction within, or in the vicinity of an observed colluvial deposit entails similar precautions to that for a debris flow.

Major controls on the potential to initiate a debris flow include topographic gradient and orientation of the slope, bedrock structure, and the accumulation of historic debris flows in topographic drainage features

58

that concentrate surface and subsurface water during intense precipitation events. Field observations of the JNF Priority Site #6 suggest that topographic and bedrock conditions are not susceptible for generating a new debris flow at the JNF Priority #6 site. However, debris flow and colluvial deposit(s) observed at, and in the near vicinity of, the site (as described above), coupled with the potential for extreme precipitation events, warrant consideration for construction and long-term operation of the pipeline.

Slope Stability and Pipeline Integrity Analyses

Existing slope stability at the JNF Priority Site #6 was evaluated for potential debris flow conditions, and colluvial deposit failure, by establishing safety factors using a numerical model with input from field observations, probabilistic analysis of material properties and analyst experience. Slope failure risk analysis was approximated using the peer-reviewed slope stability program SLIDE (RocScience, Inc.). This model incorporates Bishop, Janbu and Spencer methods, generates circular, non-circular, and optimized shaped failure planes with seismic and boundary loads.

As discussed above, the JNF Priority Site #6 is situated near an ancient debris flow mapped downslope of a rock-block slump. The debris flow and what is interpreted to be either related or younger colluvial deposits, overlie clastic sedimentary bedrock. Pipeline trenching in the vicinity of JNF Priority Site #6 will be approximately seven feet below grade, and is anticipated to remain within the debris flow (i.e., we anticipate that the debris flow is deeper than seven feet; no bedrock outcrops were observed in the vicinity). Observations of historical slope failures in other areas suggest that the likely slip plane will occur at the overburden-bedrock interface resembling an infinite slope failure. However, the depth of the slip surface within the debris flow and related colluvium has a minimal effect on the FoS (i.e., difference of less than 0.05). Therefore, the model simulates a failure surface near the overburden-bedrock interface to represent a failure with an adverse effect and not shallow, surficial sloughs.

A probabilistic model was applied to the debris flow and colluvial soil shear strength (friction angle) and unit weight using highest and lowest conceivable values (Duncan, 2000). Stability analyses were run for slope angles ranging from 15% (9 degrees) to 76% (37 degrees). While limited areas of slope exceeding this range exist at JNF Priority Site #6, they are likely composed of rocky outcrops and not colluvium. Modeling also accounted for saturated conditions and seismic loading (0.16 g; see Mountain Valley Pipeline Resource Report #6, seismic hazards analysis).

The output files for results of each analysis at the likely soil parameters are included in Appendix C. Table C-1 in Appendix C summarizes the full range of stability analysis results given the probabilistic analyses for input parameters soil density and friction angle, under increasing slope, saturated and unsaturated conditions, and with and without seismic loading.

In summary from Table C-1, based on likely colluvial material density and friction angle values, the existing colluvial deposit slopes at JNF Priority Site #6 are stable (minimum FoS of 1.1) up to at least 65% (33 degrees) native slopes under unsaturated conditions with no seismic loading (the maximum slope near JNF Priority Site #6 is 63%, with an average of 34%). Under seismic loading, unsaturated native slopes are stable (minimum FoS of 1.1) up to 45% (24 degrees). See discussion below on post-construction monitoring of native slopes.

Under saturated conditions, risk for slope failure increases substantially. The model confirms what Mountain Valley has already accounted for in construction practices, that the largest effect on the FoS is saturation from groundwater intrusion, or surface water infiltration, to the colluvial deposit (i.e., as soils become saturated, stability decreases). As discussed, Mountain Valley is aware of the need to prevent accumulation of storm water during construction, permanently divert subsurface springs or seeps from the pipeline bedding and near vicinity if encountered during construction, and to properly grade and reclaim the ground surface in the LOD after construction. Preventing saturated conditions on these steep slope environments, particularly under conditions of an ancient debris flow, is a critical factor in maintaining slope stability. The project stormwater management plans and subsurface drains implemented during construction will address the issue of overburden saturation.

The analysis suggests there is minimal risk of ground displacement. From the perspective of pipeline integrity and safety, D. G. Honegger Consulting (2015) indicated that slope displacements parallel to the proposed alignment can be screened out as not representing a significant hazard if the length of pipeline exposed to ground displacement is less than 1,150 feet (Class 1 pipe) to 1,640 feet (Class 3 pipe) from the top of the slope (screening approach assumes a relatively straight line with no connections or insulated joints in the screening distance). While Mountain Valley does not anticipate any slope failure to occur, it is even more unlikely that failure on the magnitude of 1,000's of feet. Thus the effects of displacement on the pipeline have not been analyzed. As discussed later in this document, Mountain Valley will implement a post-construction slope monitoring program. If future monitoring observations suggest slope movement is occurring, Mountain Valley will take appropriate actions to stabilize the slope and will evaluate pipeline response to the nature and degree of observed ground displacement using the recommendations provided in PRCI (2009).

60

6.2.3 Soil Stockpile and Subjacent Slope Failure

Soil stockpiles will be compacted with tracked equipment. Excavation and backfilling will be completed as quickly as possible to minimize the duration of stockpiling. At JNF Priority Site #6, the contractor will install a temporary backstop, such as reinforced silt fence, to prevent rocks from rolling/sliding off of the ROW.

Mountain Valley completed additional slope stability and sensitivity analysis in February, 2018, that shows that no spoil materials should be stored on slopes exceeding 77 percent. Spoil materials resembling the strength parameters for USCS soil type GP should not be stockpiled on slopes exceeding 63 percent; spoil materials resembling the strength parameters for USCS soil type GC should not be stockpiled on slopes exceeding 77 percent. Supporting slope stability analyses are included in Appendix C. A slope map depicting the slope conditions discussed above is included as Figure 53.

In areas of the ROW steeper than 63%, spoil will be evaluated by Mountain Valley's field geologist to determine which soil type it most closely resembles. If the spoil resembles the strength parameters for GP material, it will be moved to a flatter area temporarily during construction, then moved back during final restoration. No spoil will be stored on slopes exceeding 77 percent.

In steeper areas of the ROW, spoil stockpiles will be stored on bedrock with little soil overburden. Thus, overloading the slope in the steeper regions of the JNF Priority Site #6 does not present a technical concern for construction in these steeper areas. Temporary spoil stockpiles stored on rock will be internally stable with a factor of safety of at least 1.2 as demonstrated in Appendix C.

Colluvial deposits were observed in the flatter portions of the site. Stability of the native material underlying spoil stockpiles is of concern. The spoil will be spread out across the workspace to the extent practicable to avoid overloading the in-situ colluvial soils. Stockpiles will be compacted via rolling with dozers to prevent water infiltration and saturation of the material and thus minimize the weight of the stockpiled soil.

A geologist from the landslide inspection team deployed by Mountain Valley during construction will evaluate the subgrade to determine whether or not it is appropriate to stockpile soils in the vicinity of the colluvial deposit. The exact thickness of the colluvial deposit will not be fully determined until excavation is initiated, but as previously described, as colluvial debris generally follow ravines and drainage paths and the pipeline ROW is located on a ridge, it is unlikely that the colluvial deposit is extremely thick in the workspace area. Therefore, soils may be sufficiently thin that instability due to stockpiled material is not a concern. If the colluvial deposit is well-consolidated and relatively dry, material may be stored on top of it, at the discretion of the geologist. If colluvial deposits exceed about five feet, spoil stockpiles will be moved up or downslope to a more stable area to avoid overloading the colluvial deposit and initiating a failure.

6.2.4 Temporary Cut Failures

Cut slopes created during construction at JNF Priority Site #6 are anticipated to be minor (less than about five feet in height) and located in rock. Cut slopes will not exceed the maximum safe angle per OSHA standards for the type of material being excavated. If temporary cut slopes encounter colluvium, the slopes will be appropriately sloped to mitigate slope failure. Temporary rock cuts are anticipated to be stable in the long-term following reclamation as they will be protected by compacted native material placed to original contours as practicable.

6.2.5 Erosion

Erosion hazards will be mitigated by following the project Erosion and Sediment Control Plan E&SCP. Refer to the E&SCP for details.

6.2.6 Trench Backfill Failures

The pipeline trench will be provided with trench breakers at locations specified in the project E&SCP. These trench breakers will act as gravity retaining walls within the trench to hold the backfill in place during construction and will slow the velocity of water running through the trench, preventing subsurface erosion. Every third trench breaker at this location will be provided with daylight drains, as shown on typical drawing MVP-35, discharging water building up in the trench to water dissipation devices at the ground surface. All trench breakers not provided with daylight drains will be provided with pass-through drains as shown on typical drawing MVP-43.

As the trench backfill will be placed in compacted lifts, Mountain Valley anticipates that the trench backfill will be at least as stable as the distal extent of in-situ colluvial deposits, if encountered. Backfill is anticipated to be stable with a safety factor of at least 1.5 as demonstrated in the slope stability analysis of Appendix C. The landslide inspection team may recommend installing additional slope breakers or steep slope revetments in the trench backfill in steeper portions of the site if backfill does not exhibit the strength parameters used in the slope stability model.

6.2.7 Seeps and Springs

As the presence of seeps/springs encountered in the pipeline trench will not be known until the trench is excavated, their location and extent cannot be determined at this time. At JNF Priority Site #6, seepage (if any is encountered) will be captured by daylight drains behind the trench breakers, as shown on the

typical drawing MVP-35. These drains will outlet to energy dissipation devices at the right-of-way ground surface and any resulting discharge will be directed downslope to prevent accumulation within the limit of disturbance. Trench breaker locations are shown on the project E&SCP.

6.3 Mitigation Measures

Overall best management practices include:

- controlling surface runoff from the limit of disturbance and the reclaimed construction area to prevent direct flow into exposed debris flow or colluvial deposit;
- intercepting and controlling subsurface drainage from the excavation during construction and post-construction to prevent subsurface infiltration into the underlying debris flow or colluvial deposit;
- and constructing in a timely fashion to reduce the amount of time when the limit of disturbance is exposed to the elements and not under final grade.

Subsurface conditions observed during construction may dictate the use of enhanced mitigation measures. Site-specific observations made by the Mountain Valley landslide inspection team during construction may result in the team's recommendation for deployment of additional specific mitigation measures, which consider potential native ground movement around or below the ROW, disturbed temporary ground surface movement from initial grading and subsequent construction work and finished and restored ROW surface.

Based on field observations during construction, Mountain Valley may implement slope breakers, water bars, additional grading, French drains, armored slopes and/or ditches as enhanced drainage control measures to promote slope stability. Mountain Valley does not anticipate that structures will be required to stabilize bedrock within the trench excavation, or adjacent native soils or colluvium, however highwall/steep slope revetments or geogrid may be implemented to increase the stability of backfilled areas if soils do not exhibit the strength parameters modeled herein.

6.4 Post-Construction Monitoring and Intervention

See the discussion on post-construction monitoring and potential for intervention for the JNF Priority Sites that is presented in the last section of this document. Slope monitoring is a critical element of postconstruction operations of the pipeline and the recommended procedures (including potential reclamation measures) are applicable to all of the JNF Priority Sites.

7.0 Topsoil

During construction, topsoil will be segregated throughout the Jefferson National Forest. It will be stockpiled along the edge of the temporary workspace. Spoil piles will be temporarily stabilized with seed and mulch in accordance with the USFS guidance documents (*Suggested Seed Mixes for Pipeline Right-of-Ways and Associated Disturbances on the Monongahela and George Washington – Jefferson National Forests –* November 2016; and *Suggested Seeding Techniques for Pipeline Right-of-Ways and Associated Disturbances on the Monongahela and George Washington – Jefferson National Forests –* November 2016; and *Suggested Seeding Techniques for Pipeline Right-of-Ways and Associated Disturbances on the Monongahela and George Washington – Jefferson National Forests –* November 2016). Stockpiled soils and areas to remain inactive (excluding the travel lane) for a period exceeding 30 days shall be stabilized within 14 days of initial disturbance. During final restoration, the temporary workspace ground surface will be roughened and the topsoil will be replaced across it. The surface will be seeded within 14 days of final reclamation to stabilize the topsoil and promote vegetation growth. Mountain Valley has received recommended seed mixes from the USFS and plans to implement those mixes throughout the JNF.

8.0 Slope Stability Monitoring Program

After pipeline construction and land reclamation are completed, Mountain Valley will implement a monitoring program to verify slope stability and provide Mountain Valley with early-warning detection of subtle ground movement that may indicate incipient slope failure. If subtle ground movement is detected, the monitoring program will trigger Mountain Valley's post-construction slope evaluation and mitigation, described below. Recommendations for slope failure mitigation are discussed in Section 8.3, below. More specific mitigation measures will depend upon the results of the monitoring program, and the landslide inspection team's field observations on actual conditions.

Mountain Valley will construct the pipeline with safeguards to prevent slope failure under the various potential mechanisms addressed at the Priority Sites. Mountain Valley does not consider it sound practice to establish a construction area that requires repeated interim measures to maintain slope stability.

8.1 LiDAR Surveys

Given the remote access and steep slopes in the vicinity of the Jefferson National Forest, Mountain Valley proposes to utilize aerial LiDAR surveys on a prescribed periodic basis (discussed below) to monitor the ROW for changes in ground topography that could be indicators of potential slope movement.

LiDAR works by emitting multiple laser pulses over the same area, such that some pulses are reflected off intermediate surfaces (i.e. variable height vegetation, buildings, power lines, etc.) and some of the pulses find the underlying ground surface. The resulting data are processed to classify data that represent the

ground surface (i.e., generate a bare Earth model), providing a detailed topographic and geomorphic landform model to detect subtle ground morphologies that define natural and human-triggered landslide and erosion hazards (i.e. scarps, settlement, hummocky terrain, depletion zones, accumulation zones, sag ponds, disrupted drainage, etc.).

A progression of LiDAR data collected over time on a slope of concern will be compared to historical data in order to identify whether subtle landform changes are occurring that could correspond with possible land movement or subsidence. The sequential LiDAR models of the area of concern will be configured as a "heat map" to more clearly identify slope changes.

8.2 Monitoring Schedule

Mountain Valley's monitoring program will use LiDAR data to provide detailed ground surface mapping on slopes after construction is complete. LiDAR data detects subtle ground movement that can be used to surveille for potential impending slope failure. If ground movement is perceived via LiDAR monitoring (analysis is discussed below), direct slope inspection will take place. The intent is to mitigate subtle slope movements before larger failures occur.

Mountain Valley will conduct semiannual aerial LiDAR monitoring during an initial two-year period after construction is complete. This spans a critical period of time post-construction to confirm that land reclamation is established, and that slopes are stable through two freeze-thaw cycles. Continued monitoring described below will be used to confirm these conclusions.

If the slopes in the area of concern are demonstrated to be stable by sequential LiDAR monitoring data for the initial two years of semiannual monitoring (described above), the frequency of LiDAR survey will be reduced to annually for another two consecutive years. This will provide six LiDAR monitoring events over the span of four years in order to detect potential subtle slope movement.

If the slopes are demonstrated to be stable by sequential LiDAR monitoring data for the combined four years of monitoring (i.e., the initial two years of semiannual monitoring, followed by two years of annual monitoring), the frequency of LiDAR surveys will be further reduced to a five-year periodicity throughout the life of the pipeline.

As each new sequential LiDAR survey is completed (see monitoring schedule above), the data will be processed and compared to all historical LiDAR data (i.e., to produce a "heat map" of slope movement) to evaluate for potential ground movement over time.

If slope reclamation is required in the area of concern, Mountain Valley will remediate the area per the landslide inspection team's recommendations, and re-start the six-month / annual / five-year monitoring frequency to document that slope stability is achieved.

8.3 Slope Stability Mitigation Measures

If slope movement is detected by the LiDAR monitoring program, Mountain Valley will notify the appropriate U.S. Forest Service representative, and then engage a landslide inspection team to complete field verification and confirm actual conditions and governing reasons for the topographic changes. Recommendations for slope stability remedial measures will be provided to Mountain Valley based on the landslide inspection team's observations.

Once Mountain Valley has received recommendations from the landslide inspection team, Mountain Valley will notify the U.S. Forest Service of planned remediation activities, and offer the proposed remediation to the U.S. Forest Service for review.

Examples of potential redial measures:

- If slope movement is confirmed in surficial backfill in the ROW, enhanced backfill compaction (or replacement with engineered materials), enhanced water management, and aggressive revegetation will be implemented.
- If slope movement in native earth material outside of the ROW is confirmed, the landslide inspection team will provide recommendations to Mountain Valley for remediation measures.
- If the movement may have stressed the pipe, a stress relief excavation may be required to allow the pipeline to rebound to the non-stress condition prior to slope movement. Stress relief excavations typically start in the middle of the area where slope movement is observed, and extend in either direction until no rebound is observed, and generally continue for a minimum of an additional 50 feet. Surveys may be required during the excavation work to track pipeline rebound, and to confirm before and after pipeline location and elevation. Stress relief excavations would only be contemplated for relatively large-scale movement scenarios.
- Mountain Valley may also consider installing strain gauges on the pipeline during stress-relief
 excavation. The strain gauges would monitor potential accumulated pipeline strain in the future
 if differential ground movement continues. Strain gauge monitoring would be conducted
 manually on a yearly basis, unless LiDAR monitoring under the post-remediation timeframe
 continues to identify large-scale slope movement, in which case the strain gauges will be
 monitored on a six-month basis. Strain gauges would only be contemplated for relatively largescale movement scenarios.

9.0 References:

Duncan, M. J. (2000). Factors of Safety and Reliability in Geotechnical Engineering, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 4, April, 2000, pp 307-316.

D.G. Honegger Consulting (2015). Review of Potential Seismic Hazards Along the Proposed Route of the Mountain Valley Pipeline. Letter dated September 19, 2015 from D.G. Honegger Consulting to Mountain Valley Pipeline LLC.

Geologic Map of Virginia (1993). Commonwealth of Virginia, Department of Mines, Minerals, and Energy, Division of Mineral Resources, Charlottesville, VA.

Geology and Economic Geology (1925). Map IV, Monroe County, West Virginia. David B. Reger. West Virginia Geological Survey. 1925.

The INGAA Foundation, Inc. (2016). Mitigation of Land Movement in Steep and Rugged Terrain for Pipeline Projects: Lessons Learned from Constructing Pipelines in West Virginia.

PRCI (2009). Guideline for Constructing Natural Gas and Liquid Hydrocarbon Pipelines Through Areas Prone to Landslide and Subsidence Hazards. Final Report deliverable for Pipeline Research Council International Project ENV-1 Pipeline Integrity Management for Geohazards. Authors include C-CORE, D.G. Honegger Consulting, and SSD, Inc.

Rader, E. K. and Gathright, T. M (1986). Geologic Map of Giles County, Virginia. Virginia Division of Mineral Resources, Publication 69, Commonwealth of Virginia, Department of Mines, Minerals, and Energy, Division of Mineral Resources, Charlottesville, VA.

Schultz, A. P. (1993). Geologic Map of Large Rock Block Slides at Sinking Creek Mountain,Appalachian Valley and Ridge Province, Southwestern Virginia, and Comparison with the ColoradoFront Range. U.S. Geological Survey, Miscellaneous Investigation Series, Map I-2370. U.S. Department of the Interior.

Schultz, A. P., and Southworth, C. S. (1987). Landslides of Eastern North America. Papers presented at the Southeastern Section Geological Society of America Symposium, March 26, 1987. U.S. Geological Survey Circular 1008.

Schultz, A. P., and Southworth, C. S. (1989). Large Bedrock Landslides of the Appalachian Valley and Ridge Province of Eastern North America. Geological Society of America Special Paper 236, p 57-74.

Schultz, A. P. and Stanley, C. B. (2001). Geologic map of the Virginia portion of the Lindside Quadrangle, Virginia. Publication 160 Virginia Division of Mineral Resources; Cooperative Geological Mapping Program, U.S. Geological Survey.

Wieczorek, G. F. and Snyder, J. B. (2009). Monitoring Slope Movements. in Young, R., and Norby, L., Geological Monitoring: Boulder, Colorado, Geological Society of America, p. 245-271.

Appendix A – Figures

	2650	
	2600	
URE	2550	
RFACE		
STURBED		
_/ROCK		
	2500	
	2450	
	Z+JU	
0+00)	
	NOTE:	
	1. ALL DIME PIPELINE	NSIONS ARE APPROXIMATE AND DEPENDENT ON FIELD LOCATION.
Mountain		JNTAIN VALLEY PIPELINE
	JEFF	ERSON NATIONAL FOREST PRIORITY SITE #1
ROJECT ID	- CROSS S	ECTION EXISTING - FIGURE 4

_						
_	FACILITY	STATE	IDENTIFICATION	SERIES	SHEET	REVISION
RAWING SCALE: 1"=50'			H600			

	2650					
		_				
	2600	_				
	05E0					
JTURE	2000	_				
DISTURBED						
DIL/ROCK						
	2500					
	2450	_				
0+00						
	NOT 1. ALL PIP	E: L DIMENSIONS ARE AP PELINE FIELD LOCATION	PROXIN	IATE AND DE	PENDEN	- ON
Mountain	DRAWING TITLI	^{e:} Mountain Vai	LLEY	PIPELINE	E	
		JEFFERSON NA PRIORITY	UIONA SITE	al FORES E #1 TION	SI FICHE	ΈF
PROJECT ID — DRAWING SCALE:				SERIES	SHEET	
1 =50					1	1

	2650			
	2600			
	2550			
URE				
	2500			
	2450			
0+00)			
	NOTE:		0/////TE ///E	
	1. ALL D PIPELI	DIMENSIONS ARE APPR INE FIELD LOCATION.	OXIMATE AND D	EPENDENT ON
Mountain	DRAWING TITLE:	OUNTAIN VALL	ey pipelin	E
	JE	FFERSON NATI	ONAL FORE SITE #1	ST
ROJECT ID	CROSS SECT	TION POST CON	STRUCTION	– FIGURE 6
	FACILITY STATE		SERIES	SHEET REVISION
1 = 50		1000		1 1

						2650)
						2600)
						2550)
						2500)
					_		
						2450)
	ΝΟΤΙ	E:	-2	+00			
	1. ALL PIPE	DIMENSI Eline fie	ONS ARE APPROXIM. ILD LOCATION.	ATE AND	DEPENDEN	T ON	
	DRAWIN	IG TITLE: JI CROSS	MOUNTAIN VAI EFFERSON NA PRIORITY S SECTION EX	_LEY TIONA SITE SITE	PIPELINE L FORES #2 G – FIG	E ST SURE S	9
- DRAWING SCALE: 1"=30'	FACILITY	STATE			SERIES	SHEET	REVISION

						2650	
					_		
					_		
						2600	
					_		
					_		
					_		
					_	2550	
						2500	
					_		
					_		
						2450	
				-2+00	-		
	NOTE						
	1. ALL PIPEL	- Dimensi Line fie	ONS ARE APPRIL	DXIMATE AND	DEPENDEN	T ON	
📮 Mounțain	DRAWING	i TITLE: C		VALLEY I		E ST	
	CROSS	SEC	PRIOR	ITY SITE CONSTRU	#2 ICTION -	- FIGURE	11
	FACILITY	STATE	IDENTIFICA HGC		SERIES	SHEET REVIS	SION

- NOTES:
 EVERY THIRD TRENCH BREAKER AT PRIORITY SITE #3 SHALL BE PROVIDED WITH DAYLIGHT DRAINS AS SHOWN ON TYPICAL DRAWING MVP-35.
 ALL TRENCH BREAKERS AT PRIORITY SITE #3 NOT PROVIDED WITH DAYLIGHT DRAINS SHALL BE PROVIDED WITH PASS-THROUGH DRAINS AS SHOWN ON TYPICAL DRAWING MVP-43.

PROFILE

R	EFERENCE DRAWINGS	NO.	DATE	REVISION	BY	CHI	K APPI	D NO.	DATE	REVISION	BY	CHK	APPD	TO THE BEST OF MY KNOWLEDGE, ALL COMPONENTS OF THIS DRAWING ARE
DWG NUMBER	DRAWING TITLE	-												DESIGNED IN ACCORDANCE WITH APPLICABLE GUIDELINES AND SPECIFICATIONS
-		-												
-		-						-						
-		-						_						MECHANICAL DESIGN ENGINEER DATE
-		-						_						
-		_												<u> </u>
-		-						_						ELECTRICAL DESIGN ENGINEER DATE
_		-						-						NOTE: ANY CHANGES TO THE DESIGN SHOWN ON THIS DRAWING MUST BE
-		-						-						APPROVED BY THE DESIGN ENGINEER.

		~				
				~		
					~~~	
6+	00			7+	00	
6+	00			7+		+
6+	00 TRENCH (FROM NAT	BACKFILL IVE MATER	-ial)	7+		±9FT
6+	00 TRENCH (FROM NAT	BACKFILL IVE MATER	 IAL)	7+		±0.5FT ±9FT
6+	00 TRENCH (FROM NAT TRENCH (FROM NAT	BACKFILL VE MATER BACKFILL VE MATER UNDI: SOU	IIAL)	7+		<u>±0.5FT</u>
6+	00 TRENCH (FROM NAT TRENCH (FROM NAT	BACKFILL IVE MATER BACKFILL VE MATER UNDI: SOII	IAL) STURBED L/ROCK	7+		
6+		BACKFILL VE MATER BACKFILL VE MATER UNDI: SOII DRAWING	IIAL) STURBED L/ROCK TYPI 5 TITLE:	7+	00 /FUTURE SURFACE 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 0 E 00 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E E E E E E E E E E E E E	
		BACKFILL VE MATER BACKFILL VE MATER UNDI SOII DRAWING	Tial) STURBED L/ROCK TYPI JE STITLE: JE	7+	00 (FUTURE SURFACE 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 00 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E E E E E E E E E E E E E	



			1	2	<u> 8450</u>	
				3	<u> 400</u>	
					<u>5350</u>	
6						
6						
				_	700	
					000	
				-		
				2	3250	
		-2	+00		,200	
		-				
	NOTE				T	
	1. ALL PIPE	DIMENSIO LINE FIEI	UNS ARE APPROXIMATE AN LD LOCATION.	U DEPENDEN	IT ON	
Mountain	DRAWIN	G TITLE:	MOUNTAIN VALLEY	PIPELINE	-	
		JE	FFERSON NATION	AL FORES	ST	
ROJECT ID	с	ROSS	SECTION EXISTING	G — Figi	JRE 1	4
RAWING SCALE:	FACILITY	STATE		SERIES	SHEET	REVISION
1"=30'			H600			



			1	2	<u> 8450</u>	
				2	<u> 3400</u>	
				7	<u>350</u>	
G						
				2	<u>300</u>	
					<u>5250</u>	
		-2	+00			
	NOTE	=.				
	1. ALL	DIMENSI	ons are approximate ani	d dependen	T ON	
	PIPE	LINE FIEL	LD LOCATION.			
	DRAWIN	G TITLE:	MOUNTAIN VALLEY	PIPELIN	-	
		JE	FFERSON NATION	AL FORE	ST	
ROJECT ID	CON	STRUC	TION PHASE SECT	. <del>#</del> 3 10N - 1	FIGURI	E 15
	FACILITY	STATE	IDENTIFICATION	SERIES	SHEET	REVISION
1"=30"			H600			



			1	3	450	
				3	400	
				3	350	
<u>^</u>						
G						
				_		
				<u> </u>	300	
				z	250	
		-2	+00	J	200	
	NOTE	<u>.</u>				
	1. ALL PIPE	DIMENSI Line fie	ONS ARE APPROXIMATE AND D LD LOCATION.	EPENDEN	T ON	
	DRAWIN	G TITLE:	MOUNTAIN VALLEY PI	PELINE	-	
		JE	EFFERSON NATIONAL	FORES	ST	
ROJECT ID	CROSS	S SECI	ION POST CONSTRUCT	tion -	FIGU	RE 16
	FACILITY	STATE	IDENTIFICATION S	ERIES	SHEET	REVISION
1"=30'			H600			





F	REFERENCE DRAWINGS	NO.	DATE	REVISION	BY	CHK APP	D NO.	DATE	REVISION	ΒY	CHK	APPD	TO THE BEST OF MY KNOWLEDGE, ALL COMPONENTS OF THIS DRAWING ARE
DWG NUMBER	DRAWING TITLE						_						DESIGNED IN ACCORDANCE WITH APPLICABLE GUIDELINES AND SPECIFICATION
_		_					_						
-		-					_						
_		_					_						MECHANICAL DESIGN ENGINEER DATE
-		-					-						
-		_					_						
-		-											ELECTRICAL DESIGN ENGINEER DATE
-		_					-						NOTE: ANY CHANGES TO THE DESIGN SHOWN ON THIS DRAWING MUST BE
_		-					_						APPROVED BY THE DESIGN ENGINEER.







-	-			_			1	
-	-			-				
-	-			-			$\square$	ELE
-	-			-			$\square$	NOTE: ANY CH
_	_			_				

30	050							PROPOSED WORKSPACE LIMITS	EASEMENT		PROPOSED MVP PERMANENT EASEMENT				PROPOSED WORKSPACE LIMITS		
30	000																
					UNDISTURBEI SOIL/ROCK	)		12.5	25.0	0	25.0	87.5				DISTURBED	EG
29	950														SOIL	_/ROCK -	
								CF	COSS SI <u>SECTI</u> SCALE: 1"=;	ECTIO ION 30'-0"	N EXISTING 4B This dwg						
29	900																
				1-	-00					0+0 6+55	00 24 STATIONING PRIORITY S	; FROM Gite Ce	1 BEGIN Interlit	NING OF IE.	-1+C	00	
R DWG NUMBER	EFERENCE DRAWINGS DRAWING TITLE	NO	DATE	REVISION	BY	CHK APPD	NO. DA	TE		REVIS	SION B	SY CHK AF	PD TO TI DESIGN	IE BEST OF MY KNO ED IN ACCORDANCE	OWLEDGE, ALL COM WITH APPLICABLI	iponents of this e guidelines and	DRAWING ARE SPECIFICATIONS
													┨	MECHANICAL	-		
-														MELMANILAL DE			
-							-							ELECTRICAL DES	SIGN ENGINEER		
		<u> </u> _	-	+		+ $+$	╟╺┼──					++		L: ANY CHANGES T APPR	U THE DESIGN SHO OVED BY THE DES	IWN ON THIS DRAV	VING MUST BE









6, 2018 - 3:17 PM															
ē	R	EFERENCE DRAWINGS	NO.	DATE	REVISION	BY C	:HK /	APPD	NO.	DATE	REVISION	BY	СНК	APPD	TO THE BEST OF MY KNOWLEDGE, ALL COMPONENTS OF THIS DRAWING A
Ξ	DWG NUMBER	DRAWING TITLE	-						-						DESIGNED IN ACCORDANCE WITH APPLICABLE GUIDELINES AND SPECIFICATI
Ë	-		_						-						
Ę	-		-						-						
ő	_		_						-						MECHANICAL DESIGN ENGINEER DATE
Ē	-		-						-						
ã	-		_						_						<u> </u>
ã	_								_						ELECTRICAL DESIGN ENGINEER DATE
ŧ	-								_						NOTE: ANY CHANGES TO THE DESIGN SHOWN ON THIS DRAWING MUST B
S.	_		_						_						APPROVED BY THE DESIGN ENGINEER.
Fil	le Path: P:\B14\100	\B14188B\B14188B-17 - JNFSlope2018\CA	D\B1418	88B-17\DWG\P-\	/-H600-PS5-01cross sections work.dwg										

PROFILE

- NOTES:

- 1. EVERY THIRD TRENCH BREAKER AT PRIORITY SITE #5 SHALL BE PROVIDED WITH DAYLIGHT DRAINS AS SHOWN

- Shall be provided with datight drains as shown on typical drawing MVP-35.
  All trench breakers at priority site #5 not provided with daylight drains shall be provided with pass-through drains as shown on typical drawing MVP-43.















F	EFERENCE DRAWINGS	NO.	DATE	REVISION	B	Y CI	IK APP	D NO.	DATE	REVISION	BY	CHK A	PPD	TO THE BEST OF MY KNOWLEDGE, ALL COMPONENTS O	JGE, ALL COMPONENTS OF THIS DRAWING ARE	
DWG NUMBER	DRAWING TITLE	-						-						DESIGNED IN ACCORDANCE WITH APPLICABLE GUIDELINE	S AND SPECIFICATIONS	
_		-						-								
-		-						-							-	
_		_												MECHANICAL DESIGN ENGINEER	DATE	
-		-						-								
_		_						_								
-		_												ELECTRICAL DESIGN ENGINEER	DATE	
-		_						_						NOTE: ANY CHANGES TO THE DESIGN SHOWN ON THIS	S DRAWING MUST BE	
_		_						_						APPROVED BY THE DESIGN ENGINE	ER.	

PERMANENT EASEMENT EASEMENT WORKSPACE LIMITS PERMANENT LIMITS 2950 MVP WORKSPACE MVP PROPOSED PROPOSED PROPOSED ROPOSED С 2900  $\cap$ **EXISTING** 25.0 25.0 GRADE -87.5 -37.5-UNDISTURBED SOIL/ROCK 2850 2+00 1+00 0+00 2+21.58 - STATIONING FROM BEGINNING OF PRIORITY SITE CENTERLINE. **CROSS SECTION EXISTING** 6A This dwg SECTION SCALE: 1"=30'-0" REFERENCE DRAWINGS DATE REVISION BY CHK APPD NO. DATE REVISION TO THE BEST OF MY KNOWLEDGE, ALL COMPONENTS OF THIS DRAWING ARE NO. BY CHK APPD DESIGNED IN ACCORDANCE WITH APPLICABLE GUIDELINES AND SPECIFICATIONS DWG NUMBER DRAWING TITLE -MECHANICAL DESIGN ENGINEER DATE -ELECTRICAL DESIGN ENGINEER DATE NOTE: ANY CHANGES TO THE DESIGN SHOWN ON THIS DRAWING MUST BE APPROVED BY THE DESIGN ENGINEER. _



PERMANENT EASEMENT EASEMENT LIMITS PERMANENT WORKSPACE LIMITS 2950 MVP WORKSPACE MVP PROPOSED PROPOSED ROPOSED ROPOSED С -TOPSOIL SOIL 2900 _STOCKPILE_ **EXISTING** 25.0 25.0 SILT FENCE -GRADE -87.5 -37.5-UNDISTURBED SOIL/ROCK 2850 2+00 1+00 0+00 2+21.58 - STATIONING FROM BEGINNING OF PRIORITY SITE CENTERLINE. **CONSTRUCTION PHASE** 6A This dwg SECTION SCALE: 1"=30'-0" REFERENCE DRAWINGS DATE REVISION BY CHK APPD NO. DATE REVISION TO THE BEST OF MY KNOWLEDGE, ALL COMPONENTS OF THIS DRAWING ARE NO. BY CHK APPD DESIGNED IN ACCORDANCE WITH APPLICABLE GUIDELINES AND SPECIFICATIONS DWG NUMBER DRAWING TITLE -MECHANICAL DESIGN ENGINEER DATE ELECTRICAL DESIGN ENGINEER DATE NOTE: ANY CHANGES TO THE DESIGN SHOWN ON THIS DRAWING MUST BE APPROVED BY THE DESIGN ENGINEER. _



PERMANENT EASEMENT EASEMENT LIMITS PERMANENT WORKSPACE LIMITS 2950 MVP WORKSPACE MVP PROPOSED - PROPOSED ROPOSED ROPOSED С TRENCH BACKFILL ~(FROM NATIVE MATERIAL) 2900 Ω 42" H-600 PIPELINE RECLAIMED TOPSOIL **EXISTING** 25.0 25.0 GRADE -87.5 -37.5-UNDISTURBED SOIL/ROCK 2850 2+00 1+00 0+00 2+21.58 - STATIONING FROM BEGINNING OF PRIORITY SITE CENTERLINE. **POST CONSTRUCTION PHASE** 6A This DWG SECTION SCALE: 1"=30'-0" REFERENCE DRAWINGS DATE REVISION BY CHK APPD NO. DATE REVISION TO THE BEST OF MY KNOWLEDGE, ALL COMPONENTS OF THIS DRAWING ARE NO. BY CHK APPD DESIGNED IN ACCORDANCE WITH APPLICABLE GUIDELINES AND SPECIFICATIONS DWG NUMBER DRAWING TITLE -MECHANICAL DESIGN ENGINEER DATE ┼╌╢╧╷ ELECTRICAL DESIGN ENGINEER DATE NOTE: ANY CHANGES TO THE DESIGN SHOWN ON THIS DRAWING MUST BE APPROVED BY THE DESIGN ENGINEER.





DWG NUMBER

## NOTE:

1. ALL DIMENSIONS ARE APPROXIMATE AND DEPENDENT ON PIPELINE FIELD LOCATION.

	DRAWIN	I TITLE: JE ROSS	MOUNTAIN VALLEY EFFERSON NATIONA PRIORITY SITE SECTION EXISTING	PIPELINE AL FORES E #1 G — FIGU	E ST JRE 3	55
_	FACILITY	STATE	IDENTIFICATION	SERIES	SHEET	REVISION
DRAWING SCALE: 1"=50'			H600			



DWG NUMBER

## NOTE:

1. ALL DIMENSIONS ARE APPROXIMATE AND DEPENDENT ON PIPELINE FIELD LOCATION.

		3 TITLE: I JE STRUC	MOUNTAIN VALLEY EFFERSON NATION/ PRIORITY SITE CTION PHASE SECT	PIPELINE AL FORES E #1 TION — F	<u>:</u> St Figuri	E 36
-	FACILITY	STATE	IDENTIFICATION	SERIES	SHEET	REVISION
DRAWING SCALE: 1"=50'			H600			



DWG NUMBER

## NOTE:

1. ALL DIMENSIONS ARE APPROXIMATE AND DEPENDENT ON PIPELINE FIELD LOCATION.

	DRAWING	JE JE SEC1	MOUNTAIN VALLEY EFFERSON NATION/ PRIORITY SITE TION POST CONSTRI	PIPELINE AL FORES E #1 JCTION -	: St - Figu	IRE 37
-	FACILITY	STATE	IDENTIFICATION	SERIES	SHEET	REVISION
DRAWING SCALE: 1"=50'			H600			


















ŝ















Appendix B – Typical Drawings



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-35.dwg

Plotted by: McCarthy, Matthew on: May 16, 2017 – 10:30 AM



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-36a.dwg



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-36b.dwg

Plotted by: McCarthy, Matthew on: May 16, 2017 - 10:31 AM



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-37.dwg



Plotted by: McCarthy, Matthew on: May 16, 2017 – 10:31 AM



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-38B.dwg

Plotted by: McCarthy, Matthew on: May 16, 2017 - 10:31 AM



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-39.dwg

DRAWN

APP'D

SCALE



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-40.dwg



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-41.dwg

Plotted by: McCarthy, Matthew on: May 16, 2017 - 10:31 AM



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-42A.dwg

Plotted by: McCarthy, Matthew on: May 16, 2017 – 10:31 AM



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-42B.dwg

Plotted by: McCarthy, Matthew on: May 16, 2017 – 10:31 AM

## COMPACTION NOTES

- 1) ALL ROCKS LARGER THAN 6 INCHES IN SIZE, AND MORE THAN 10 PERCENT BY VOLUME SHOULD BE REMOVED AND PROPERLY DISPOSED FROM THE BACKFILL MATERIAL.
- 2) THE SUBGRADE AT THE BASE OF THE EXCAVATION SHOULD BE PROOFROLLED WITH A PNEUMATIC TIRED ROLLER OR VEHICLE.
- 3) THE EXCAVATED AREA SHALL BE BACKFILLED WITH THE CLEANED EXCAVATED SOIL MATERIAL AND COMPACTED IN PLACE.
- 4) BACKFILL OPERATIONS SHALL BE PERFORMED WHEN SOIL IS SUITABLE FOR COMPACTION (I.E., NOT IMMEDIATELY FOLLOWING A LARGE RAIN, SNOW, OR ICE EVENT). FROZEN FILL SHALL NOT BE USED.
- 5) THE BACKFILL SHALL BE PLACED IN COMPACTED LIFTS NO GREATER THAN 12 INCHES.
- 6) MAINTAIN A MINIMUM 2FT CLEARANCE BETWEEN COMPACTION ACTIVITY AND THE GAS PIPELINE.

## GEOGRID NOTES

- 1) GEOGRID REINFORCEMENT SHALL BE TENCATE MIRAFI 3XT OR APPROVED EQUIVALENT.
- 2) THE GEOGRID MATERIAL SHALL BE STORED UNDAMAGED PURSUANT TO MANUFACTURERS RECOMMENDATIONS.
- 3) GEOGRID SHALL BE PLACED HORIZONTALLY ON THE BACKFILL WITH THE PRINCIPAL STRENGTH DIRECTION PERPENDICULAR TO THE FACE OF THE SLOPE. ADJACENT PIECES OF PRIMARY GEOGRID SHALL NOT OVERLAP BUT ARE TO BE BUTTED SIDE TO SIDE.
- 4) REMOVE ALL SLACK IN THE GEOGRID MATERIAL AND ANCHOR AS NECESSARY WITH PINS, OR BAGS TO PREVENT SLACK FROM DEVELOPMENT DURING FILL PLACEMENT AND COMPACTION.
- 5) FILL IS TO BE PLACED AND SPREAD DIRECTLY ON THE GEOGRID MATERIAL WITH RUBBER TIRED EQUIPMENT ONLY. SPEEDS ARE TO BE KEPT SLOW WITH AS FEW STOPS AND TURNS AS PRACTICAL.
- 6) DO NOT OPERATE TRACKED EQUIPMENT DIRECTLY ON THE GEOGRID MATERIAL.
- 7) MAINTAIN A MINIMUM 2FT CLEARANCE BETWEEN GEOGRID MATERIAL AND THE GAS PIPELINE.

						THIS TYPICAL CONSTRUCTION DETAIL IS INTEN PROVIDE GUIDANCE TO THE PIPELINE CONTRA THE ACTUAL CONSTRUCTION TECHNIQUES MAY DEPENDING UPON FIELD CONDITIONS AND OR REGULATORY REQUIREMENTS.	ded to Ctor. Differ	
DRAWN	TDD	DATE	2/03/2016		TY	PICAL CONSTRUCTION DE	ETAIL	
CHECKED	MMF	DATE	2/03/2016	Mountain				
APP'D		DATE						
SCALE N	N.T.S.	SHEET	3 OF 3	vallev		GEOGRID NOTES		
JOB NO.				PIPELINE				
PROJECT ID:								
				DESIGN ENGINEERING	DRAV		REV.	
PXXXX						MVP-42C	0	

Plotted by: McCarthy, Matthew on: May 16, 2017 – 10:31 AM

File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-42C.dwg



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-43A.dwg

Plotted by: McCarthy, Matthew on: May 16, 2017 – 10:31 AM



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-43B.dwg

Plotted by: McCarthy, Matthew on: May 16, 2017 - 10:31 AM



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-44A.dwg



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-44B.dwg

16, 2017 - 10:32 AM

Matthew on: May

Plotted by: McCarthy,



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-45.dwg

Plotted by: McCarthy, Matthew on: May 16, 2017 - 10:32 AM



File Path: C:\Vault Working\Systems\MVP\H-600\H-600 Bid Package\Drawing Files\Design Files\Mechanical\Construction Typicals\MVP-46.dwg

Plotted by: McCarthy, Matthew on: May 16, 2017 – 10:30 AM

Appendix C – Slope Stability Output






## Table C-1. Summary of Slope Stability Analysis

			De	ensity (p	cf)	Frict	tion Ang	le (°)	
Slope (% and Ratio)	Groundwater / Precipitation Model	Seismic Load Applied (g)	Low 115	Likely 132	High 161	Low 24	Likely 36	High 50	FS (Bishop)
	Saturated	0		х			х		2.6
15%	(Perpindicular & h _w =h)	0.16		X			x		1.2
6.7:1	· · · · · · · · · · · · · · · · · · ·	0.10		X			X		1.2
••••=	No GW	0.16		X			X		
		0.10		X			X		1.2
				~			×		1.2
		0	X				X		1.0
		0			X			X	1.4
	Caturatad			X		X			(°)       FS (Bishop)         50       2.6         1.2       4.9         2.3       1.2         4.9       2.3         1.2       4.9         2.3       1.2         1.2       4.9         2.3       1.2         1.0       X         1.0       X         1.0       X         1.1       0.7         X       1.9         0.6       X         X       0.6         X       0.4         X       1.1         X       0.5         X       1.2         0.4       X         X       0.5         X       1.2         0.4       0.4         X       0.5         X       1.2         0.4       0.4         X       0.6         X       0.6         X       0.6         X       0.7         X       1.0         X       0.7         X       1.6         X       0.7         X       0.7      X <tr< td=""></tr<>
222/	Saturated	-		X				Х	1.9
30%	(Perpindicular & n _w =n)			X			X		0.7
3.3:1			X				Х		0.6
		0.16			Х			X	0.8
				X		Х			0.4
				Х				Х	1.1
	No GW	0		Х			Х		2.4
		0.16		Х			Х	Х	1.5
				Х			Х		0.7
			Х		ely         High           161                                                                                                                                                                       <		Х		0.6
		0			Х			Х	0.9
				Х		Х		High 50FS (Bishop)2.61.24.92.31.21.0X1.0X1.40.7X1.90.7X0.6X0.4X1.12.4X0.5X0.6X0.6X0.6X0.6X0.6X0.6X0.5X1.20.40.4X0.6X0.7X1.6X0.7X1.1X1.1X1.1X1.1X1.1X1.1X1.1X0.7X0.8X0.7X0.6X1.0X0.7X0.6X1.0X0.7X0.6X0.7X0.7X0.7X0.7X0.7X0.7X0.7X0.7	
	Saturated			Х				Х	High 50FS (Bishop)2.61.24.92.31.21.21.10X1.40.7X1.90.7X0.6X0.6X0.4X1.12.4X0.5X0.6X0.6X0.6X0.6X0.6X0.6X0.5X1.1X0.6X0.7X1.6X1.7X1.1X1.1X1.1X1.1X1.1X1.1X0.7X1.1X0.7X1.10X1.10X0.5X1.10X1.10X1.10X1.10X1.10X1.10X1.10X1.10X1.10X1.10X1.10X1.10X1.11 <tr< td=""></tr<>
	(Perpindicular & h _w =h)			Х			Х		
		0.16	Х				Х		0.4
					Х			Х	0.6
				Х		Х			0.3
45%				Х				х	1.1         2.4         1.5         0.7         0.6         0.9         0.5         1.2         0.4         0.6         0.3         0.8         1.6         0.7         1.9         1.1         1.0         2.7         0.4         0.2         1.1
2.2:1				Х			Х	X     0.6       0.3     0.3       X     0.8       1.6       X     0.7       X     1.9	1.6
			Х				Х		16
		0			Х			Х	1.0
				Х		Х			0.7
	No GW/			Х				Х	1.9
		0.16		Х			Х		1.1
			Х				Х		1 1
					Х			х	1.1
				Х		Х			1.0
				Х				Х	2.7
	Saturated	0		Х			Х		0.4
	(Perpindicular & h _w =h)	0.16		Х			Х		0.2
				Х			Х		1.1
			Х				Х		
		0			Х			Х	
65%				Х		Х			0.7
1.5:1				Х				Х	1.8
				Х			Х		0.8
			Х				Х		0.0
		0.16			Х			Х	0.8
				Х		Х			0.5
				Х				Х	1.3
	Saturated	0		Х			Х		0.3
	(Perpindicular & h _w =h)	0.16		Х			Х		0.1
		l		Х			Х		1.0
			Х				Х		
		0			Х			Х	1.0
76%				Х		Х			0.6
1.3:1				Х				Х	1.6
	No GW			Х			Х		0.7
			х				Х		
		0.16		1	Х			Х	0.7
				Х		Х			0.4
				Х	1		1	Х	1.1





MVP Debri - 15 Slope.slmd

▶ 0.16 JWWw





## ► 0.16

700





































JNF1: Trench Backfill Stability - 65% Slope

Safety Factors Are Calculated By The Modified Bishop Method

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. *********** Analysis Run Date: 12/16/2016 Time of Run: 11:38AM Insert Name/company Here Run By: Input Data Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf1 trench backfill 65pct.in Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf1 trench backfill 65pct.OUT Unit System: English Plotted Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf1 trench backfill 65pct.PLT PROBLEM DESCRIPTION: JNF1: Trench Backfill Stability -65% Slope BOUNDARY COORDINATES

1 Top Boundaries 2 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type (ft) (ft) (ft) (ft) Below Bnd No. 0.00 10.00 1 100.00 75.00 1 65.00 2 0.00 0.00 100.00 2 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) User Specified Y-Plus Value = 25.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (pcf) No. (pcf) (psf) (deg) Param. (psf) No. 120.0 125.0 250.0 28.0 0.00 0.0 0 1 2 160.0 160.0 1000.0 45.0 0.00 0.0 Ω A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 750 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of 75 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft)and X = 45.00(ft)Each Surface Terminates Between X = 50.00(ft)and X = 100.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 5.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 750 Number of Trial Surfaces With Valid FS = 750 Statistical Data On All Valid FS Values: FS Max = 18.190 FS Min = 1.612 FS Ave = 3.149 Standard Deviation = 1.219 Coefficient of Variation = 38.69 % Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 3.041 11.976 1 2 7.884 13.216 3 12.680 14.630 4 17.422 16.215 5 22.104 17.971 26.720 6 19.894 7 31.263 21.982 8 35.728 24.232 9 40.109 26.641 10 44.400 29.207 11 48.597 31,926 12 52.692 34.794 13 56.682 37.808 60.560 14 40.964 15 64.322 44.257 16 67.963 47.684 71.479 17 51.239 74.864 18 54.919 78.114 19 58.719 20 81.225 62.633 21 81.457 62.947 Circle Center At X = -28.946 ; Y = 147.009 ; and Radius = 138.769 Factor of Safety 1.612 *** Individual data on the 20 slices Water Water Force Force Tie Earthquake Tie Force Force Force Surcharge Slice Width Weight Тор Bot Norm Tan Hor Ver Load (lbs) (lbs) (lbs) (lbs) No. (ft) (lbs) (lbs) (lbs) (lbs) 0.0 0.0 0.0 1 4.8 554.7 2 4.8 1588.7 0.0 0.0 Ο. Ο. 0.0 0.0 0.0

y:jnfl trench backfill 65pct.OUT Page 3

3 4	4.7 4.7	2481.3 3232.0	0.0	0.0	0. 0.	0. 0.	0.0	0.0	0.0
5 6	4.6	3841.2 4310 6	0.0	0.0	0.	0.	0.0	0.0	0.0
7	4.5	4642.9	0.0	0.0	0.	0.	0.0	0.0	0.0
8 9	4.4 4.3	4842.2	0.0	0.0	0. 0.	0. 0.	0.0	0.0	0.0
10	4.2	4863.0	0.0	0.0	0.	0.	0.0	0.0	0.0
11 12	4.1 4.0	4697.8	0.0	0.0	0. 0.	0. 0.	0.0	0.0	0.0
13	3.9	4057.3	0.0	0.0	0.	0.	0.0	0.0	0.0
14 15	3.8	3601.1	0.0	0.0	0. 0.	0. 0.	0.0	0.0	0.0
16	3.5	2470.8	0.0	0.0	0.	0.	0.0	0.0	0.0
17 18	3.4	1820.6	0.0	0.0	0.	0.	0.0	0.0	0.0
19	3.1	414.2	0.0	0.0	0.	0.	0.0	0.0	0.0
20	0.2 Failure	2.3 - Surfac	0.0 e Specif	0.0 ied Bv 19 Co	0. pordinat	0. e Points	0.0	0.0	0.0
	Point	t X	-Surf	Y-Surf					
	No. 1		(ft) 13 378	(ft) 18 696					
	2		18.250	19.822					
	3		23.070	21.149					
	5		32.525	24.402					
	6		37.142	26.321					
	8		41.075	30.727					
	9		50.458	33.207					
	10		54.692 58.812	35.866					
	12		62.810	41.701					
	13 14		70.414	44.867 48.192					
	15		74.007	51.670					
	16 17		80.742	55.294					
	18		83.872	62.958					
	19 Circle	Center	86.076 At X =	65.949 -11.180 ; :	Y = 13	6.076 ;	and Rad	lus = 1	19.921
		Factor	of Safet	У					
	Failure	*** 1 e Surfac	626 * e Specif:	** ied By 18 Co	oordinat	e Points	3		
	Point	t X	-Surf	Y-Surf					
	NO. 1		(ft) 1.824	(11) (11.186					
	2		6.741	12.097					
	3 4		11.603 16.399	13.261					
	5		21.115	16.336					
	6 7		25.739	18.239					
	8		34.661	22.747					
	9 10		38.935	25.342					
	10		47.053	31.176					
	12 13		50.874 54 524	34.401					
	14		57.992	41.420					
	15		61.269	45.197					
	10 17		67.215	49.138 53.233					
	18	Gamtas	67.698	54.004	7 10				
	Circle	Center Factor	of Safet	-⊥3.∠80 ; ) Y	$r = \pm 0$	0.5U4 ;	and Rad	lus =	90.5U/
		*** 1	.634 *	**			_		
	Point	e Suriac t X	e specif: Surf	теа ву 24 Co Y-Surf	Jorainat	e points.	5		
	No.		(ft)	(ft)					

1	4.257	12.767							
2	8.987	14.386							
3	13.680	16.113							
4	18.332	17.945							
5	22.941	19.882							
6	27.506	21.924							
7	32.023	24.068							
8	36.490	26.314							
9	40.905	28.661							
10	45.265	31.107							
11	49.570	33.652							
12	53.815	36.293							
13	57.999	39.030							
14	62.120	41.861							
15	66.176	44.785							
16	70.165	47.800							
17	74.084	50.905							
18	77.932	54.097							
19	81.707	57.376							
20	85.406	60.740							
21	89.028	64.187							
22	92.5/1	6/./15							
23	96.033	71.323							
24 Ginala (	98.528	74.043	~		071	• • • • •	Dedice		220 202
Circle (	Center At $X = -64$ .	/40 ; Y	= 2	22.	0/1	; and	Radius	=	220.383
1 * *	ACLOF OF Salety								
 Failure	Surface Specified P	17 20 Co	ordina	+ 0	Doin	ta			
Point	X-Surf X-	Surf	orurne		FOII				
No.	(ft.) (	ft)							
1	10.946	17.115							
2	15.764	18.452							
3	20.533	19.953							
4	25.249	21.616							
5	29.904	23.440							
6	34.494	25.422							
7	39.014	27.560							
8	43.458	29.851							
9	47.821	32.293							
10	52.098	34.883							
11	56.284	37.618							
12	60.374	40.494							
13	64.363	43.509							
14	68.246	46.659							
15	72.019	49.939							
17	/5.0/8	53.34/ EC 070							
1 / 1 0	79.210 90.625	50.070							
10	85 925	61 293							
20	88.628	67.608							
Circle (	Center At $X = -25$ .	655 ; Y	= 1	58.	427	; and	Radius	=	145.975
E E	Factor of Safety		_						
**	** 1.657 ***								
Failure	Surface Specified B	y 21 Co	ordina	te	Poin	lts			
Point	X-Surf Y-	Surf							
No.	(ft) (	ft)							
1	0.000	10.000							
2	4.777	11.477							
3	9.509	13.092							
4	14.191	14.846							
5	18.821	16.735							
6	23.393	18.758							
7	27.904	20.914							
8	32.351	23.200							
10	30./29	∠5.0⊥0 20 1⊑0							
11	41.034 25 961	30 83E 70'T2Ω							
12	49 412	33 614							
13	53,480	36.523							
14	57.460	39.550							
	J 100								

42.691 15 61.350 45.945 16 65.146 17 68.846 49.308 18 72.446 52.778 19 75.944 56.351 20 79.335 60.025 21 82.428 63.578 Circle Center At X = -48.194; Y =174.353 ; and Radius = 171.274 Factor of Safety 1.679 *** * * * Failure Surface Specified By 17 Coordinate Points Y-Surf Point X-Surf No. (ft) (ft) 28.581 28.578 1 2 33.470 29.628 3 38.300 30.918 32.445 4 43.061 5 47.741 34.206 6 52.329 36.195 7 56.812 38.407 8 61.181 40.839 9 65.425 43.483 10 69.533 46.333 73.496 11 49.382 12 77.303 52.624 13 80.945 56.049 84.414 59.649 14 15 87.702 63.417 16 90.799 67.342 93.022 70.464 17 Circle Center At X = 9.751 ; Y = 128.113 ; and Radius = 101.301 Factor of Safety * * * 1.691 *** Failure Surface Specified By 15 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 6.689 14.348 1 2 11.653 14.951 3 16.560 15.909 17.217 4 21.386 5 26.105 18.868 б 30.694 20.854 35.128 39.385 7 23.164 8 25.787 9 43.443 28.709 10 47.280 31.914 11 50.877 35.387 12 54.216 39.109 13 57.278 43.062 14 60.049 47.224 15 61.670 50.085 Circle Center At X = 0.785 ; Y = 83.671 ; and Radius = 69.574 Factor of Safety 1.698 *** * * * Failure Surface Specified By 15 Coordinate Points X-Surf Y-Surf Point No. (ft) (ft) 6.081 13.953 1 2 11.049 14.515 3 15.962 15.446 4 20.791 16.742 5 25.510 18.393 6 30.093 20.393 7 34.514 22.728 8 38.749 25.387 42.773 9 28.355 10 46.564 31.614 11 50.102 35.147 38.935 12 53.367 13 56.340 42.955

```
59.00447.18659.94848.966
  14
  15
Circle Center At X =
                        1.039 ; Y = 80.739 ; and Radius = 66.977
     Factor of Safety
*** 1.706 ***
Failure Surface Specified By 15 Coordinate Points
  Point X-Surf Y-Surf
  No.
             (ft)
                        (ft)
   1
             24.932
                         26.206
   2
            29.888
                         26.874
            34.784
39.598
44.306
48.885
   3
                         27.885
                          29.237
   4
   5
                          30.920
                         32.929
   6
   7
            53.313
                         35.252
   8
            57.567
                         37.879
            61.628
                        40.796
   9
            65.475
69.090
                        43.989
47.443
   10
   11
   12
             72.455
                         51.142
             75.554
   13
                         55.066
                        59.197
62.009
   14
             78.371
   15
             80.014
Circle Center At X = 17.860 ; Y = 97.438 ; and Radius = 71.582
     Factor of Safety
     *** 1.709 ***
        **** END OF GSTABL7 OUTPUT ****
```



## JNF1: Trench Backfill Stability - 25' Breaker Spacing, 76% Slope

Safety Factors Are Calculated By The Modified Bishop Method

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) *********** SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. 12/15/2016 Analysis Run Date: Time of Run: 04:27PM Run By: Insert Name/company Here y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif Input Data Filename: ic Stabilization\JNF Slope Stability\jnf1 25f breakers 76pct.in Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf1 25f breakers 76pct.OUT Unit System: English Plotted Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf1 25f breakers 76pct.PLT PROBLEM DESCRIPTION: JNF1: Trench Backfill Stability -25' Breaker Spacing, 76% Slope BOUNDARY COORDINATES 1 Top Boundaries 2 Total Boundaries

Soil Type Boundary X-Left Y-Left X-Right Y-Right No. (ft) (ft) (ft) (ft) Below Bnd 1 0.00 10.00 25.00 29.00 1 19.00 0.00 25.00 2 2 0.00 Default Y-Origin = 0.00(ft)Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (pcf) (psf) No. (pcf) (deg) (psf) Param. No. 120.0 125.0 250.0 28.0 0.00 0.0 0 1 160.0 2 160.0 1000.0 45.0 0.00 0.0 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced 0.00(ft) Along The Ground Surface Between X = and X = 14.00(ft)Each Surface Terminates Between X = 15.00(ft) X = 25.00(ft)and Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 1.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 1000 Number of Trial Surfaces With Valid FS = 1000 Statistical Data On All Valid FS Values: FS Max = 55.443 FS Min = 1.999 FS Ave = 4.973 Standard Deviation = 4.905 Coefficient of Variation = 98.62 % Failure Surface Specified By 35 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 0.424 10.322 2 1.421 10.244 2.421 10.209 3 4 3.421 10.219 5 4.419 10.273 5.414 10.372 6 7 6.404 10.514 8 7.387 10.700 9 8.360 10.929 10 9.322 11.201 10.271 11 11.516 12 11.206 11.872 13 12.124 12,269 14 13.023 12.707 15 13.902 13.184 16 14.759 13.699 15.592 17 14.252 18 16.400 14.841 19 17.181 15.466 20 17.934 16.124 21 18.656 16.815 22 19.348 17.538 23 20.007 18.290 24 20.632 19.071 25 21.221 19.878 26 21.775 20.711 27 22.290 21.568 28 22.768 22.447 29 23.206 23.345 30 23.604 24.263 31 23.961 25.197 32 24.276 26.146 33 24.548 27.108

	34		24.778	28.0	082				
	35 Circle	Center	24.945 At X =	28.9	958 ; Y =	32 783	; and Ra	dius =	22 575
	CIICIC	Factor	of Safet	2.090 Cy	, 1 -	52.705	, and ne	arab -	22.373
		*** ]	.999	***					
	I	ndividua	al data d	on the Water	34 slid	ces	Farthou	ako	
			Force	Force	Force	Force	Ford	e Surc	charge
Slice	Width	Weight	Тор	Bot	Norm	Tan	Hor	Ver	Load
No.	(ft)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
1	1.0	50.0	0.0	0.0	0.	0.	0.0	0.0	0.0
2	1.0	147.9	0.0	0.0	0.	0.	0.0	0.0	0.0
4	1.0	327.5	0.0	0.0	0.	0.	0.0	0.0	0.0
5	1.0	407.7	0.0	0.0	0.	0.	0.0	0.0	0.0
6	1.0	480.8	0.0	0.0	0.	0.	0.0	0.0	0.0
7	1.0	546.3	0.0	0.0	0.	0.	0.0	0.0	0.0
8	1.0	603.8 652 9	0.0	0.0	0.	0.	0.0	0.0	0.0
10	0.9	693.4	0.0	0.0	0.	0.	0.0	0.0	0.0
11	0.9	725.2	0.0	0.0	0.	0.	0.0	0.0	0.0
12	0.9	748.2	0.0	0.0	0.	0.	0.0	0.0	0.0
13	0.9	762.6	0.0	0.0	0.	0.	0.0	0.0	0.0
14 15	0.9	768.5	0.0	0.0	0.	0.	0.0	0.0	0.0
16	0.8	755.7	0.0	0.0	0.	0.	0.0	0.0	0.0
17	0.8	737.9	0.0	0.0	0.	0.	0.0	0.0	0.0
18	0.8	713.0	0.0	0.0	0.	0.	0.0	0.0	0.0
19	0.8	681.8	0.0	0.0	0.	0.	0.0	0.0	0.0
∠0 21	0.7	602 9	0.0	0.0	0.	0.	0.0	0.0	0.0
22	0.7	556.7	0.0	0.0	0.	0.	0.0	0.0	0.0
23	0.6	507.1	0.0	0.0	0.	0.	0.0	0.0	0.0
24	0.6	455.0	0.0	0.0	0.	0.	0.0	0.0	0.0
25 26	0.6	401.3 347 0	0.0	0.0	0.	0.	0.0	0.0	0.0
27	0.5	293.0	0.0	0.0	0.	0.	0.0	0.0	0.0
28	0.4	240.4	0.0	0.0	0.	0.	0.0	0.0	0.0
29	0.4	190.2	0.0	0.0	0.	0.	0.0	0.0	0.0
30	0.4	143.2	0.0	0.0	0.	0.	0.0	0.0	0.0
32	0.3	63.0	0.0	0.0	0.	0.	0.0	0.0	0.0
33	0.2	31.7	0.0	0.0	0.	0.	0.0	0.0	0.0
34	0.2	7.5	0.0	0.0	0.	0.	0.0	0.0	0.0
	Failur	e Surfac	ce Specif	Eied By 30	6 Coordin -	nate Poir	nts		
	POIN	L 2	(ft)	I-Sur. (ft)	L				
	1		0.990	10.	752				
	2		1.974	10.	577				
	3		2.966	10.4	451				
	4 5		3.963	10.	3/4 347				
	6		5.963	10.1	370				
	7		6.960	10.4	443				
	8		7.953	10.	566				
	9 10		8.938	10.	738 958				
	11		10.876	11.2	227				
	12		11.825	11.	544				
	13		12.756	11.9	908				
	14		13.668	12.	318 272				
	15 16		15,426	⊥∠. 1२ '	271				
	17		16.267	13.8	812				
	18		17.080	14.3	395				
	19		17.862	15.0	017				
	20		10 220	15.0	0/8 275				
	∠⊥ 22		20.011	17.1	107				
	23		20.655	17.8	872				

24 25 26 27 28 29 30 31 32 33 34 35 36 Circle	21.260 21.825 22.347 22.827 23.262 23.652 23.995 24.291 24.539 24.738 24.889 24.990 24.990 24.990 24.996 Center At X = Factor of Safety	18.668 19.493 20.346 21.224 22.124 23.045 23.984 24.939 25.908 26.888 27.877 28.872 28.997 5.001 ; Y	=	30.39	10 <i>;</i> a	and	Radius	=	20.043
Failure	e Surface Specified	l By 35 Coo	ordina	te Po	ints				
Point	X-Surf	Y-Surf							
No.	(ft)	(ft)							
1	0.283	10.215							
2	1.283	10.197							
3	2.282	10.221							
4	3.280	10.285							
5	4.275	10.391							
6 7	5.264	10.536							
2 Q	7 221	10.723							
9	8 185	11 215							
10	9,137	11.520							
11	10.076	11.864							
12	11.000	12.247							
13	11.908	12.666							
14	12.797	13.123							
15	13.668	13.615							
16	14.517	14.143							
17	15.344	14.705							
10	16.147	15.301							
20	17 677	15.929							
20	18 402	17 278							
22	19.097	17.996							
23	19.762	18.743							
24	20.397	19.516							
25	20.999	20.314							
26	21.568	21.137							
27	22.102	21.982							
28	22.602	22.848							
29	23.066	23.734							
30	23.493	24.038 25 559							
32	24 234	26 495							
33	24.547	27.445							
34	24.821	28.407							
35	24.956	28.967							
Circle	Center At X =	1.209 ; Y	=	34.61	1;a	and	Radius	=	24.414
	Factor of Safety								
*	** 2.016 ***								
Failure	Surface Specified	a By 34 Coo	ordina	te Po	oints				
Point	X-Surf	Y-Surf							
NO.	(It)	(IC) 11 075							
⊥ 2	1.414	10 062							
2	2.400 2 406	10.903 10 000							
4	4 406	10.884							
5	5.405	10.915							
6	6.402	10.995							
7	7.394	11.122							
8	8.379	11.296							
9	9.354	11.518							
10	10.317	11.785							
11	11.267	12.099							
----------	---------------------	--------------	--------	--------	-----	--------	---	--------	
12	12 201	12 457							
13	13 116	12 860							
14	14 011	13 306							
15	14.884	13.794							
16	15 732	14 324							
17	16 554	14 893							
18	17 348	15 501							
19	18 112	16 146							
20	18 844	16 827							
20	19 5/3	17 5/2							
21	20 207	18 201							
22	20.207	10.251							
23	20.034	19.009							
21	21.423	20 712							
20	21.973	20.712							
20	22.405	21.373							
27	22.951	22.457							
20	23.370	23.302							
29	23.757	24.200							
21	24.095	25.220							
22	24.305	20.100							
3⊿ 22	24.030	27.134							
22	24.020	20.134							
34	24.956	28.966	21	700 .		D - 1			
Circle	Center At $X =$	4.242 ; Y =	= 31.	/88 i	ana	Radius	=	20.905	
	Factor of Salety								
ہ רי	** 2.035 ***								
Failure	Surface Specified	a By 36 Coor	dinate	Points	3				
Point	x-Suri	Y-Suri							
NO.	(It)	(IT)							
Ţ	0.707	10.537							
2	1.683	10.319							
3	2.669	10.153							
4	3.662	10.038							
5	4.661	9.976							
6	5.660	9.967							
./	6.660	10.010							
8	7.655	10.105							
9	8.644	10.253							
10	9.624	10.452							
11	10.592	10.703							
12	11.546	11.004							
13	12.482	11.355							
14	13.399	11.755							
15	14.293	12.202							
16	15.163	12.696							
17	16.005	13.235							
18	16.818	13.817							
19	17.600	14.441							
20	18.347	15.105							
21	19.058	15.808							
22	19.732	16.547							
23	20.366	17.321							
24	20.958	18.126							
25	21.507	18.962							
26	22.011	19.826							
27	22.470	20.715							
28	22.881	21.626							
29	23.243	22.558							
30	23.556	23.508							
31	23.819	24.473							
32	24.030	25.450							
33	24.190	26.437							
34	24.298	27.432							
35	24.353	28.430							
36	24.354	28.509							
Circle	Center At X =	5.342 ; Y =	28.	981 ;	and	Radius	=	19.017	
	Factor of Safety								
4	*** 2.038 ***								
Failure	e Surface Specified	d By 35 Coor	dinate	Points	5				

No.	(ft)	(ft)			
1	0.848	10.645			
2	1.828	10.444			
3	2.817	10.294			
4	3.812	10.196			
5	4.811	10.151			
6	5.811	10.158			
7	6.809	10.216			
8	7.803	10.327			
9	8.790	10.490			
10	9.767	10.704			
11	10.731	10.969			
12	11.680	11.284			
13	12.611	11.648			
14	13.522	12.060			
15	14.411	12.519			
16	15.274	13.024			
17	16.109	13.574			
18	16.915	14.166			
19	17.689	14.800			
20	18.428	15.473			
21	19.132	16.184			
22	19.797	16.930			
23	20.422	17.711			
24	21.006	18.523			
25	21.546	19.364			
26	22.042	20.233			
27	22.491	21.126			
28	22.894	22.042			
29	23.248	22.977			
30	23.552	23.929			
31	23.807	24.896			
32	24.010	25.875			
33	24.162	26.864			
34	24.263	27.859			
35	24.292	28.462			
Circle	Center At X =	5.184 ; Y =	29.279 ;	and Radius	= 19.132
	Factor of Safety				
*	** 2.042 ***	1 - 06 - 1			
Failure	Surface Specified	a By 36 Coord	inate Point	S	
POINU	X-SUPI	I-SUPI			
NO.	(IL) 0.282	(LL) 10 21E			
1 2	1 246	0 046			
2	2 222	9.940			
1	2.222	9.729			
	1 203	9.500			
5	5 201	9.400			
7	6 201	9.400			
, 8	7 200	9 449			
q	8 1 9 4	9 555			
10	9 181	9 715			
11	10 159	9 927			
12	11 123	10 192			
13	12 071	10 509			
14	13 001	10.876			
15	13,910	11,293			
16	14.795	11.759			
17	15,654	12.272			
18	16,483	12.830			
19	17.281	13.433			
2.0	18.046	14.078			
21	18.774	14.763			
22	19.464	15.486			
23	20.115	16.246			
24	20.723	17.040			
25	21.288	17.865			
26	21.807	18.720			
27	22 279	19 601			
27	22.21)	10.001			

Point X-Surf Y-Surf

28	22.703	20.507	
29	23.077	21.434	
30	23.400	22.381	
3⊥ 32	23.672	23.343	
32	23.092	24.310	
34	24.172	26.298	
35	24.231	27.296	
36	24.237	28.420	
Circle C	Center At X =	5.739; Y = 27.897; and Radius = 18.	.505
년 * *	actor of Salety		
Failure	Surface Specified	d By 34 Coordinate Points	
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	1.556	11.182	
2	2.545	11.035	
4	4.539	10.890	
5	5.539	10.893	
6	6.537	10.946	
7	7.532	11.048	
8	8.520	11.200	
9 10	9.500	11.402 11.652	
11	11.423	11.950	
12	12.361	12.296	
13	13.281	12.688	
14	14.180	13.126	
15	15.056	13.608	
10 17	15.907	14.134	
18	17.524	15.309	
19	18.287	15.956	
20	19.016	16.640	
21	19.710	17.360	
22	20.367	18.114	
23 24	20.986	19 715	
25	22.102	20.559	
26	22.596	21.428	
27	23.046	22.321	
28	23.451	23.235	
29	23.809	24.169	
30	24.121	25.119	
32	24.599	27.060	
33	24.765	28.047	
34	24.864	28.897	
Circle C	Center At X =	4.988; Y = $30.858$ ; and Radius = $19$ .	.973
ך * *	* 2 043 ***		
Failure	Surface Specified	d By 35 Coordinate Points	
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	1.556	11.182	
2	2.532	10.967	
4	4 512	10.603	
5	5.511	10.634	
б	6.511	10.629	
7	7.510	10.676	
8	8.505	10.776	
9 10	9.493 10 472	LU.929 11 134	
11	11 438	11,391	
12	12.390	11.698	
13	13.324	12.055	
14	14.238	12.461	
15	15.129	12.915	

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Circle	15.995 16.833 17.641 18.417 19.158 19.863 20.530 21.155 21.739 22.279 22.774 23.222 23.622 23.973 24.274 24.525 24.723 24.870 24.964 24.995 Center At X =	13.415 13.960 14.549 15.180 15.851 16.561 17.306 18.086 18.898 19.740 20.609 21.503 22.419 23.355 24.309 25.277 26.257 27.247 28.242 28.996 6.113 ; Y =	29.519 ; and Radius =	18.894
	Factor of Salety *** 2 046 **	*		
Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	X-Surf (ft) 0.000 0.992 1.989 2.989 3.988 4.986 5.979 6.964 7.941 8.905 9.855 10.789 11.704 12.598 13.469 14.314 15.132 15.921 16.679 17.403 18.093	Y-Surf (ft) 10.000 9.874 9.796 9.768 9.790 9.860 9.980 10.148 10.365 10.629 10.941 11.299 11.702 12.151 12.642 13.176 13.751 14.366 15.019 15.708 16.432		
22 23 24 25 26	18.746 19.361 19.936 20.471 20.963	17.189 17.978 18.796 19.641 20.511		
27 28 29	21.412 21.816 22.175	21.405 22.320 23.253		
30	22.487	24.203		
3⊥ 32	22./52 22.969	⊿5.⊥6/ 26.144		
33	23.138	27.129		
34	23.199	27.631		
Circle	<pre>Center At X = Factor of Safety *** 2.049 **</pre>	3.060 ; Y =	30.051 ; and Radius =	20.283
	**** END OF G	STABL7 OUTPUT *	* * *	



## JNF2: Trench Backfill Stability - 46% Slope

Safety Factors Are Calculated By The Modified Bishop Method

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) ***** SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. 12/16/2016 Analysis Run Date: 11:46AM Time of Run: Run By: Insert Name/company Here y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif Input Data Filename: ic Stabilization\JNF Slope Stability\jnf2 trench backfill.in y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif Output Filename: ic Stabilization\JNF Slope Stability\jnf2 trench backfill.OUT Unit System: English Plotted Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf2 trench backfill.PLT PROBLEM DESCRIPTION: JNF2: Trench Backfill Stability -46% Slope BOUNDARY COORDINATES 1 Top Boundaries 2 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 0.00 8.00 100.00 54.00 1 1 46.00 2 0.00 0.00 100.00 2 Default Y-Origin = 0.00(ft)Default X-Plus Value = 0.00(ft) User Specified Y-Plus Value = 25.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (psf) No. (pcf) (pcf) (deq) Param. (psf) No. 28.0 125.0 250.0 0.00 1 120.0 0.0 0 45.0 2 160.0 160.0 1000.0 0.00 0.0 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 900 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of 90 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft)and X = 45.00(ft)Each Surface Terminates Between X = 50.00(ft)and X = 100.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 5.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 900 Number of Trial Surfaces With Valid FS = 900 Statistical Data On All Valid FS Values: FS Max = 13.970 FS Min = 2.303 FS Ave = 4.620 Standard Deviation = 1.191 Coefficient of Variation = 25.78 % Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 15.674 15.210 15.857 2 20.632 3 25.564 16.678 17.672 4 30.464 18.838 5 35.327 6 40.145 20.174

	7 8		44.913 49.625	21.0 23.3	580 351				
	9		54.275	25.2	188				
	10		58.858	27.1	187 347				
	12		67.799	31.0	563				
	13 14		72.146 76 403	34.2	134 757				
	15		80.565	39.5	528				
	16		84.627	42.4	443				
	18		88.583 92.430	45.3	500 594				
	19		96.162	52.0	022				
	20 Circl	e Center	96.591 At X =	-0.200	432 ; Y =	156.283	; and Ra	adius =	141.963
	01101	Factor	of Safet	су	, -	1001200	, and no		1117700
		*** Todividu	2.303 ³	***	10 alio	700			
		Individuo	Water	Water	Tie	Tie	Earthqu	ıake	
<b>01</b>	771 341-	tra di sela ta	Force	Force	Force	Force	Ford	ce Suro	charge
No.	width (ft)	Weight (lbs)	(lbs)	BOT (lbs)	Norm (lbs)	(lbs)	Hor (lbs)	ver (lbs)	Load (lbs)
1	5.0	486.0	0.0	0.0	0.	0.	0.0	0.0	0.0
2	4.9	1395.4	0.0	0.0	0.	0.	0.0	0.0	0.0
4	4.9	2182.4	0.0	0.0	0.	0.	0.0	0.0	0.0
5	4.8	3383.5	0.0	0.0	0.	0.	0.0	0.0	0.0
6 7	4.8 4.7	4087.3	0.0	0.0	0.	0.	0.0	0.0	0.0
8	4.7	4256.4	0.0	0.0	0.	0.	0.0	0.0	0.0
9 10	4.6	4307.7	0.0	0.0	0.	0.	0.0	0.0	0.0
11	4.4	4074.7	0.0	0.0	0.	0.	0.0	0.0	0.0
12	4.3	3801.6	0.0	0.0	0.	0.	0.0	0.0	0.0
13 14	4.3 4.2	3433.0	0.0	0.0	0. 0.	0.	0.0	0.0	0.0
15	4.1	2441.3	0.0	0.0	0.	0.	0.0	0.0	0.0
16 17	4.0	1835.9	0.0	0.0	0.	0.	0.0	0.0	0.0
18	3.7	456.1	0.0	0.0	0.	0.	0.0	0.0	0.0
19	0.4	5.5	0.0	0.0	0.	0.	0.0	0.0	0.0
	Pallu Poi	re Suria nt	ce Specij X-Surf	Tied By 19 Y-Suri	9 Coordin E	nate Polr	ITS		
	No	•	(ft)	(ft)					
	1		19.719 24 680	17.0	071 591				
	3		29.616	18.4	494				
	4		34.518	19.4	476				
	5		44.199	20.0	976				
	7		48.964	23.4	491				
	8		53.670	25.	179 039				
	10		62.882	29.0	068				
	11		67.374	31.2	262				
	13		76.103	36.2	138				
	14		80.328	38.8	813				
	15 16		84.451 88.468	41.0 44.0	540 517				
	17		92.374	47.7	739				
	18		96.162	51.0	002				
	Circl	e Center	At $X =$	5.272	; Y =	152.692	; and Ra	adius =	136.388
		Factor	of Safet	ΣΥ Y					
	Failu	re Surfa	2.310 ° ce Specif	ied Bv 1'	7 Coordin	nate Poir	nts		
	Poi	nt 2	X-Surf	Y-Suri	E				
	No 1	•	(ft) 4 045	(ft)	861				
	±		1.010	2.0					

2 9.027 10.287 3 13.983 10.943 4 18.905 11.828 5 23.779 12.940 6 28.597 14.277 7 15.834 33.349 8 38.023 17.610 9 42.609 19.601 10 47.099 21.801 11 51.482 24.207 55.749 12 26.813 29.614 13 59.891 14 63.899 32.604 67.764 15 35.776 16 71.478 39.123 17 74.800 42.408 Circle Center At X = -2.671 ; Y = 117.665 ; and Radius = 108.013 Factor of Safety 2.323 *** * * * Failure Surface Specified By 17 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 1 1.517 8.698 6.495 2 9.160 11.446 9.861 3 4 16.357 10.799 5 21.218 11.971 б 26.017 13.375 7 30.743 15.008 8 35.385 16.865 9 39.933 18.943 10 44.375 21.237 11 48.703 23.742 12 52.905 26.451 56.973 13 29.359 14 60.896 32.458 15 64.666 35.742 16 68.275 39.204 17 68.614 39.563 -5.628 ; Y = Circle Center At X = 112.632 ; and Radius = 104.179 Factor of Safety * * * 2.399 *** Failure Surface Specified By 15 Coordinate Points Point X-Surf Y-Surf (ft) (ft) No. 1 2.022 8.930 2 7.013 9.232 3 11.979 9.818 4 16.903 10.687 5 21.769 11.835 26.562 6 13.259 7 31.266 14.954 8 35.865 16.915 9 40.345 19.136 10 44.691 21.608 48.889 24.325 11 12 52.925 27.276 56.785 13 30.454 60.458 14 33.846 15 63.872 37.381 Circle Center At X = -0.762 ; Y = 96.445 ; and Radius = 87.559 Factor of Safety * * * 2.410 *** Failure Surface Specified By 15 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 33.876 23.583 2 38.869 23.847 3 43.838 24.409 4 48.764 25.266

5 53.630 26.415 27.852 6 58.419 7 63.114 29.572 8 67.698 31.569 9 72.154 33.835 10 36.364 76.468 39.145 11 80.623 12 84.605 42.169 88.400 45.425 13 91.993 14 48.901 94.240 15 51.350 31.945 ; Y = 107.379 ; and Radius = 83.818 Circle Center At X = Factor of Safety 2.417 *** * * * Failure Surface Specified By 15 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 26.798 20.327 31.792 2 20.556 36.763 3 21.096 4 41.691 21.946 5 46.555 23.101 6 51.339 24.557 7 56.022 26.308 8 60.587 28.348 9 65.015 30.669 10 69.291 33.262 73.396 11 36.116 12 77.315 39.221 81.033 13 42.564 14 84.536 46.132 15 85.621 47.386 25.624 ; Y = 100.450 ; and Radius = 80.131 Circle Center At X = Factor of Safety *** 2.430 *** Failure Surface Specified By 14 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 28.315 21.025 2 33.313 21.157 38.290 3 21.631 4 43.224 22.442 5 48.091 23.588 6 52.868 25.063 7 57.534 26.861 8 62.066 28.972 9 66.444 31.388 10 70.647 34.097 74.655 37.085 11 12 78.451 40.341 13 82.015 43.847 14 84.830 47.022 Circle Center At X = 28.892 ; Y = 94.197 ; and Radius = 73.175 Factor of Safety 2.437 *** * * * Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf (ft) (ft) No. 16.180 1 15.443 2 21.102 16.319 25.997 17.339 3 4 30.861 18.500 5 35.688 19.803 б 40.475 21.245 7 45.219 22.825 8 49.915 24.543 9 54.558 26.397 10 59.146 28.385 11 63.674 30.506 12 68.139 32.757

35.137 72.536 13 14 76.862 37.644 15 81.113 40.276 85.286 16 43.030 17 89.377 45.905 18 93.383 48.897 19 97.300 52.005 53.666 20 99.273 Circle Center At X = -11.431 ; Y = 184.897 ; and Radius = 171.689 Factor of Safety *** 2.440 *** Failure Surface Specified By 14 Coordinate Points Y-Surf Point X-Surf No. (ft) (ft) 41.461 27.072 1 2 46.456 27.289 51.426 3 27.831 4 56.351 28.698 5 61.208 29.884 6 65.977 31.385 7 70.638 33.195 75.171 8 35.305 9 37.707 83.775 10 40.391 87.809 11 43.345 12 91.642 46.556 13 95.257 50.010 14 98.129 53.139 Circle Center At X = 40.671; Y =103.419 ; and Radius = 76.351 Factor of Safety *** 2.469 *** **** END OF GSTABL7 OUTPUT ****



Safety Factors Are Calculated By The Modified Bishop Method

## JNF2: Sideslope Stability - 1.5H:1V

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 12/16/2016 Time of Run: 11:42AM Run By: Insert Name/company Here Input Data Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf2 sideslope ridgetop.in Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf2 sideslope ridgetop.OUT Unit System: English Plotted Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf2 sideslope ridgetop.PLT PROBLEM DESCRIPTION: JNF2: Sideslope Stability -1.5H:1V BOUNDARY COORDINATES 4 Top Boundaries 6 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type (ft) No. (ft) (ft) (ft) Below Bnd 0.00 5.75 1 0.00 9.44 1 2 9.44 5.75 20.99 8.91 1 3 20.99 8.91 35.67 10.01 1 10.01 9.34 4 35.67 39.47 1 5 0.00 0.00 30.15 0.00 2 6 30.15 0.00 39.47 9.34 2 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (deg) Param. (psf) No. (pcf) (pcf) (psf) No. 28.0 120.0 125.0 250.0 0.00 0.0 0 1 2 160.0 160.0 1000.0 45.0 0.00 0 0.0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 750 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of 75 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft)and X = 15.00(ft)Each Surface Terminates Between X = 16.00(ft)and X = 39.47(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 1.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 750 Number of Trial Surfaces With Valid FS = 750 Statistical Data On All Valid FS Values: FS Max = 100.310 FS Min = 3.739 FS Ave = 10.939 Standard Deviation = 10.009 Coefficient of Variation = 91.50 % Failure Surface Specified By 22 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 0.608 0.370

	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Circle	Center Factor	1.592 2.585 3.584 4.584 5.581 6.572 7.552 8.518 9.466 10.391 11.291 12.162 13.000 13.802 14.564 15.284 15.959 16.587 17.687 17.698 At X = of Safe	0. 0. 0. 0. 0. 0. 1. 1. 1. 2. 2. 3. 4. 4. 5. 6. 7. 7. 8. 3.937	191 075 021 030 102 238 435 694 013 391 827 319 865 462 109 803 541 320 137 989 009 ; Y =	15.860	; and Ra	adius =	15.844
Slice No. 1 2 3	Width (ft) 1.0 1.0 1.0	Weight (lbs) 45.9 135.8 219.4	Water Force Top (1bs) 0.0 0.0 0.0	Water Force Bot (lbs) 0.0 0.0 0.0	Tie Force Norm (lbs) 0. 0. 0.	Tie Force Tan (lbs) 0. 0. 0.	Earthqu Forc (lbs) 0.0 0.0 0.0	uake ce Surd (lbs) 0.0 0.0 0.0	charge Load (lbs) 0.0 0.0 0.0
4 5 7 8 9 10 11	1.0 1.0 1.0 1.0 1.0 0.9 0.0 0.9	295.4 362.6 419.9 466.5 501.9 511.1 14.7 520.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 13 14 15 16 17 18 19 20	0.9 0.8 0.8 0.8 0.7 0.7 0.6 0.6	488.6 449.5 403.9 353.1 298.5 241.5 183.8 127.1 73.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 0  .  0 \\ 0  .  0 \\ 0  .  0 \\ 0  .  0 \\ 0  .  0 \\ 0  .  0 \\ 0  .  0 \\ 0  .  0 \\ 0  .  0 \\ 0  .  0 \end{array}$	0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
21 22	0.5 0.0 Failur Poin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	23.4 0.0 e Surfac t 2	0.0 0.0 ce Speci: K-Surf (ft) 0.608 1.604 2.603 3.602 4.602 5.600 6.596 7.587 8.572 9.551 10.521 11.481 12.430 13.366 14.289 15.196	0.0 0.0 fied By 2 Y-Sur (ft) 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 2. 2. 2.	0. 0. 7 Coordin f 370 279 226 209 231 289 385 518 689 896 139 419 734 085 470 890	0. 0. nate Poim	0.0 0.0	0.0 0.0	0.0

17 18 19	16.088 16.961 17.816	3.344 3.830 4.349		
20 21	18.651 19.464	4.900 5.482		
22	20.255	6.093		
23 24	21.023 21.766	6./34 7.403		
25	22.484	8.100		
26	23.175	8.822		
Circle C	lenter At X =	3.537 ; Y =	26.904 ; and Radius =	26.694
F	actor of Safety			
** Failura	** 3.747 *** Surface Specifie	d By 25 Coordi	nate Doints	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
$\frac{1}{2}$	1.800	0.494		
3	2.796	0.254		
4	3.795	0.205		
5	4.795	0.204 0.251		
7	6.789	0.345		
8	7.779	0.487		
9 10	8.761 9.733	0.676		
11	10.692	1.194		
12	11.637	1.522		
⊥3 14	12.565 13 474	1.894 2.310		
15	14.362	2.770		
16	15.228	3.271		
17 18	16.068	3.813 4.394		
19	17.667	5.014		
20	18.421	5.671		
21 22	19.143	6.362 7.088		
23	20.484	7.846		
24	21.099	8.634		
25 Circle (	21.312 enter At X =	8.934 4.315 ; Y =	21.115; and Radius =	20.917
F	actor of Safety			
**	* 3.752 ***	J Dr. 29 Goordi	nata Dainta	
Point	X-Surf	ч Бу 28 соогог Y-Surf	liate points	
No.	(ft)	(ft)		
1	0.405	0.247 0.181		
3	2.403	0.148		
4	3.403	0.147		
5	4.402	0.180		
7	6.395	0.346		
8	7.386	0.478		
9 10	8.373	0.642		
11	10.326	1.069		
12	11.291	1.331		
⊥3 14	12.247 13 193	⊥.624 1.949		
15	14.128	2.305		
16	15.050	2.692		
17 18	15.959 16.853	3.109 3.555		
19	17.733	4.032		
20	18.596	4.537		
∠⊥ 22	20.269	5.631		
		-		

21.078 23 6.219 21.867 24 6.834 25 22.635 7.474 26 23.382 8.140 27 24.106 8.829 24.439 28 9.168 Circle Center At X = 2.908 ; Y = 30.337 ; and Radius = 30.194 Factor of Safety *** 3.753 *** Failure Surface Specified By 29 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 1 0.203 0.123 2 1.201 0.073 3 2.201 0.053 4 3.201 0.062 5 4.200 0.100 б 5.198 0.168 7 6.193 0.265 8 7.185 0.392 9 8.173 0.548 10 9.156 0.733 11 10.133 0.947 12 11.103 1.190 13 12.065 1.461 14 13.019 1.761 15 13.964 2.089 16 14.899 2.444 17 15.823 2.827 18 16.735 3.237 19 17.634 3.674 20 18.521 4.137 21 19.393 4.626 22 20.250 5.141 5.680 23 21.092 24 21.918 6.245 25 22.726 6.833 26 23.517 7.445 27 24.289 8.081 28 25.042 8.738 29 25.600 9.255 Circle Center At X = 2.399 ; Y = 33.909 ; and Radius = 33.857 Factor of Safety * * * 3.762 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 0.811 0.494 1 2 1.785 0.268 3 2.773 0.113 3.769 4 0.030 5 4.769 0.018 б 5.767 0.079 6.759 7 0.212 8 7.738 0.416 9 8.699 0.690 10 9.639 1.033 10.551 1.443 11 12 11.431 1.918 13 12.275 2.454 14 13.078 3.051 15 13.835 3.703 16 14.544 4.409 17 15.200 5.164 18 15.799 5.964 16.339 19 6.806 20 16.817 7.684 21 16.861 7.780 Circle Center At X = 4.424; Y = 13.861 ; and Radius = 13.847 Factor of Safety

ł	*** 3.780 ***					
Failure	e Surface Specifie	d By 20	Coordinate	Points		
Point	X-Surf	Y-Surf				
No.	(ft)	(ft)	-			
1 O	0.203	0.12	3			
2	1.200	0.04	4			
5 1	2.199	0.02	3 Q			
<del>ч</del> Б	J 197	0.05	3			
5	5 183	0.15	5 4			
7	6 161	0.50	1			
8	7,126	0.77	÷ 5			
9	8.073	1.09	4			
10	9.001	1.46	7			
11	9.906	1.89	3			
12	10.785	2.37	0			
13	11.634	2.89	8			
14	12.452	3.47	3			
15	13.236	4.09	5			
16	13.982	4.76	0			
17	14.688	5.46	8			
18	15.353	6.21	5			
19	15.9/4	6.99	9			
Circle	10.441	2 075 :	5 V – 17	3/4 ; and	Padiug -	17 200
CILCIE	Factor of Safety	2.075 /	1 - 1/	. 344 / allu	Raulus -	1/.322
ł	** 3 792 ***					
Failure	Surface Specifie	d Bv 29	Coordinate	Points		
Point	X-Surf	Y-Surf				
No.	(ft)	(ft)				
1	0.811	0.49	4			
2	1.802	0.36	3			
3	2.798	0.26	8			
4	3.796	0.20	9			
5	4.796	0.18	5			
6	5.796	0.19	6			
./	6.794	0.24	3			
8	/./91 0 70/	0.32	6			
10	0./04	0.44	4 7			
11	10 754	0.39	6			
12	11,729	1.00	9			
13	12.695	1.26	7			
14	13.652	1.55	9			
15	14.597	1.88	5			
16	15.530	2.24	4			
17	16.450	2.63	6			
18	17.356	3.06	1			
19	18.245	3.51	7			
20	19.118	4.00	5			
21	19.973	4.52	4			
22	20.809	5.07	3 1			
23 24	21.025	5.05	1 Q			
24 25	22.419	6 89	2 2			
26	23 942	7 55	5			
27	24.667	8.24	3			
28	25.368	8.95	7			
29	25.644	9.25	9			
Circle	Center At X =	4.971 ;	Y = 28	.281 ; and	Radius =	28.097
	Factor of Safety					
ł	*** 3.793 ***					
Failure	e Surface Specifie	d By 25	Coordinate	Points		
Point	X-Surf	Y-Surf				
NO.	(1t)	(It)	2			
⊥ 2	U.2U3 1 202	0.12	っ 1			
∠ 2	2 202	0.10	÷ 6			
4	3,201	0.14	8			
5	4.197	0.25	6			
-		0				

0.381 5.189 6 7 6.176 0.543 7.156 8 0.742 8.128 9 0.976 10 9.091 1.247 11 10.043 1.552 10.983 12 1.893 13 11.910 2.269 14 12.822 2.678 15 13.719 3.121 14.599 16 3.597 15.460 17 4.104 18 16.302 4.644 17.124 19 5.214 17.923 20 5.814 18.700 21 6.444 22 19.454 7.102 23 20.182 7.787 20.885 24 8.498 25 21.282 8.932 1.306 ; Y = 27.125 ; and Radius = 27.024 Circle Center At X = Factor of Safety * * * 3.805 *** Failure Surface Specified By 25 Coordinate Points X-Surf Y-Surf Point No. (ft) (ft) 1.014 0.617 1 2 2.007 0.502 3.004 3 0.432 4 0.406 5 5.004 0.427 6.002 6 0.492 6.996 7.983 7 0.603 8 0.758 8.963 9 0.959 10 9.933 1.203 10.890 11 1.491 11.834 1.822 12 13 12.762 2.196 13.671 14 2.611 15 14.561 3.067 16 15.430 3.563 16.275 4.097 17 18 17.095 4.670 17.888 19 5.279 20 18.653 5.923 21 19.388 6.601 22 20.091 7.312 23 20.761 8.054 24 21.397 8.826 25 21.489 8.947 Circle Center At X = 4.057 ; Y = 22.473 ; and Radius = 22.066 Factor of Safety * * * 3.830 *** **** END OF GSTABL7 OUTPUT ****



JNF3: Trench Backfill Stability - 41% Slope

Safety Factors Are Calculated By The Modified Bishop Method

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) ***** SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. 12/16/2016 Analysis Run Date: 11:48AM Time of Run: Run By: Insert Name/company Here y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif Input Data Filename: ic Stabilization\JNF Slope Stability\jnf3 trench backfill.in y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif Output Filename: ic Stabilization\JNF Slope Stability\jnf3 trench backfill.OUT Unit System: English Plotted Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf3 trench backfill.PLT PROBLEM DESCRIPTION: JNF3: Trench Backfill Stability -41% Slope BOUNDARY COORDINATES 1 Top Boundaries 2 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 0.00 10.00 100.00 41.00 1 1 2 0.00 0.00 100.00 31.00 2 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) User Specified Y-Plus Value = 25.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deq) Param. (psf) No. 28.0 125.0 250.0 0.00 1 120.0 0.0 0 45.0 2 160.0 160.0 1000.0 0.00 0.0 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft)and X = 45.00(ft)Each Surface Terminates Between X = 50.00(ft)and X = 100.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 5.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 1000 Number of Trial Surfaces With Valid FS = 1000 Statistical Data On All Valid FS Values: FS Max = 25.578 FS Min = 2.998 FS Ave = 6.488 Standard Deviation = 1.980 Coefficient of Variation = 30.52 % Failure Surface Specified By 22 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 1 2.273 10.705 10.415 2 7.264 3 12.263 10.309 10.387 4 17.263 10.648 5 22.256 6 27.236 11.093

	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Circl	e Center	32.196 37.131 42.032 46.893 51.708 56.470 61.173 65.811 70.377 74.865 79.269 83.583 87.801 91.917 95.927 97.880 At X =	11. 12. 13. 14. 16. 17. 19. 21. 23. 25. 27. 30. 32. 35. 38. 40. 12.663	721 530 520 689 036 559 257 125 163 368 735 263 948 786 773 343 ; Y =	146.213	; and Ra	adius =	135.906
		*** 2	2.998	***	01 -1				
		Individua	Water	Water	ZI SII Tie	ces Tie	Earthqu	ıake	
Slice	Width	Weight	Force	Force Bot	Force Norm	Force Tan	Ford Hor	ce Surc Ver	charge Load
No.	(ft)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
1 2	5.0 5.0	550.1 1598.5	0.0	0.0	0.	0.	0.0	0.0	0.0
3	5.0	2536.8	0.0	0.0	0.	0.	0.0	0.0	0.0
4	5.0	3360.0 4064 1	0.0	0.0	0.	0.	0.0	0.0	0.0
6	5.0	4646.1	0.0	0.0	0.	0.	0.0	0.0	0.0
7	4.9	5104.1 5437 4	0.0	0.0	0.	0.	0.0	0.0	0.0
9	4.9	5646.3	0.0	0.0	0.	0.	0.0	0.0	0.0
10	4.8	5732.1	0.0	0.0	0.	0.	0.0	0.0	0.0
12	4.7	5546.0	0.0	0.0	0.	0.	0.0	0.0	0.0
13	4.6	5282.2	0.0	0.0	0.	0.	0.0	0.0	0.0
14	4.6	4911.8	0.0	0.0	0.	0.	0.0	0.0	0.0
16	4.4	3878.6	0.0	0.0	0.	0.	0.0	0.0	0.0
18	$4.3 \\ 4.2$	3231.7 2510.1	0.0	0.0	0.	U. 0.	0.0	0.0	0.0
19	4.1	1723.8	0.0	0.0	0.	0.	0.0	0.0	0.0
20 21	4.0	883.7	0.0	0.0	0. 0.	0.	0.0	0.0	0.0
21	Failu	ire Surfac	ce Speci	fied By 2	1 Coordi	nate Poir	nts	0.0	0.0
	Poi	.nt 2	<pre>X-Surf (ft)</pre>	Y-Sur (ft)	f				
	1	-	5.000	11.	550				
	2	2	9.984 14 981	11.	151 962				
	4	Ł	19.980	10.	984				
	5	5	24.975	11.	215 657				
	7	7	34.913	12.	307				
	8	3	39.839	13.	165				
	10	)	49.561	14.	499				
	11	-	54.339	16.	970				
	13	3	59.052 63.690	18. 20.	508				
	14	<u>l</u>	68.246	22.	569				
	16	5	/∠./⊥⊥ 77.077	24. 27.	ora 255				
	17	7	81.337	29.	873				
	18	5	85.483 89.509	32. 35.	ьь / 633				
	20	)	93.406	38.	766				
	21 Circl	.e Center	93.741 At X =	39. 16.972	060 ; Y =	129.855	; and Ra	adius =	118.909

]	Factor of Safety							
**	** 3.036 ***	*		Delat				
Failure	Surface Specific	ed By 22 Coo	rdinate	Point	S			
Point	X-Suri	Y-Suri						
NO.	(It)	(IT)						
l	0.455	10.141						
2	5.448	9.883						
3	10.447	9.809						
4	15.446	9.920						
5	20.437	10.215						
6	25.414	10.694						
7	30.370	11.357						
8	35.298	12.202						
9	40.192	13.228						
10	45.044	14.435						
11	49.849	15.819						
12	54.599	17.380						
13	59.288	19.115						
14	63.910	21.023						
15	68.458	23.099						
16	72.927	25.342						
17	77.310	27.748						
18	81,601	30.315						
19	85.794	33.038						
20	89 884	35 914						
21	93 866	38 939						
22	94 178	30.000						
Circle (	Contor $\lambda t X =$	$9 952 \cdot v$	- 1/5	100 .	and	Padiug	_	125 201
CIICIE (	Eastor of Safaty	9.952 / 1	- 145.	199 1	anu	Raurus	-	199.991
۱ ۰ <del>۱</del>	** 2 027 ***	*						
		°		Delat				
Fallure	Surface Specifie	еа ву 20 Соо. И Стоб	rainate	POINC	S			
Point	X-Suri	Y-Suri						
NO.	(IC)	(IC)						
Ţ	10.000	13.100						
2	14.977	12.618						
3	19.970	12.368						
4	24.970	12.349						
5	29.966	12.563						
б	34.946	13.008						
7	39.900	13.683						
8	44.818	14.588						
9	49.688	15.720						
10	54.500	17.077						
11	59.244	18.655						
12	63.910	20.452						
13	68.488	22.464						
14	72.967	24.686						
15	77.338	27.113						
16	81.593	29.740						
17	85.720	32.562						
18	89.712	35.573						
19	93.560	38.765						
20	93.957	39.127						
Circle (	Center At X =	22.875 ; Y	= 119.	997 ;	and	Radius	=	107.669
1	Factor of Safety	22.070 / 2			and	raaras		10,1000
*	** 3 066 **	*						
Failura	Surface Specifi	ad By 22 Coo	rdinato	Doint	d			
Point	X-Surf	V-Surf	rarnace	I OIIIC	D			
No	(ft)	(ft)						
1	1 818	10 564						
1	£ 017	10.304						
2	0.017	10.472						
3	11.817	10.541						
4	10.812	LU.//U						
5	21.796	11.159						
6	26.766	11.708						
7	31.716	12.415						
8	36.640	13.281						
9	41.535	14.305						
10	46.393	15.484						
11	51.212	16.819						

10					
ΤZ	55.985	18.308			
13	60.708	19.948			
14	65.377	21.740			
15	69.985	23.680			
16	74.529	25.766			
17	79.003	27.997			
18	83.404	30.371			
19	87.726	32.884			
20	91 966	35 535			
20	96 118	38 320			
21	00.110	10 010			
dimale (	39.730	40.910 7 170 · V -	166 202	· and Dadius -	155 011
CIrcle	Center At X =	/.1/8 / Y =	100.383	, and Radius =	122.911
1	factor of Salety	. <b>т</b>			
_ 1 -	** 3.0/9 **	*			
Failure	Surface Specifi	ed By 19 Coord	inate Poin	ts	
Point	X-Surf	Y-Surf			
No.	(ft)	(ft)			
1	19.091	15.918			
2	24.055	15.322			
3	29.044	14.981			
4	34.043	14.894			
5	39.040	15.063			
6	44.022	15,486			
7	48 976	16 163			
, 8	53 889	17 092			
0	50.009	10 271			
10	50.740	10.2/1			
10	63.541	19.090			
11	68.254	21.364			
12	72.877	23.270			
13	77.396	25.409			
14	81.800	27.776			
15	86.078	30.365			
16	90.218	33.169			
17	94.209	36.180			
18	98.042	39.391			
19	99.660	40.895			
Circle (	Center At X =	33.239 ; Y =	112.841	; and Radius =	97.950
Circle (	Center At X = Factor of Safety	33.239 ; Y =	112.841	; and Radius =	97.950
Circle ( ]	Center At X = Factor of Safety ** 3.083 **	33.239 ; Y =	112.841	; and Radius =	97.950
Circle ( I Failure	Center At X = Factor of Safety ** 3.083 ** Surface Specifi	33.239 ; Y = * ed By 22 Coord	112.841 inate Poin	; and Radius =	97.950
Circle ( Failure	Center At X = Factor of Safety ** 3.083 ** Surface Specifi X-Surf	33.239 ; Y = * ed By 22 Coord Y-Surf	112.841 inate Poin	; and Radius = ts	97.950
Circle ( Failure Point	Center At X = Factor of Safety ** 3.083 ** Surface Specifi X-Surf (ft)	33.239 ; Y = * ed By 22 Coord Y-Surf (ft)	112.841 inate Poin	; and Radius = ts	97.950
Circle ( Failure Point No.	Center At X = Factor of Safety ** 3.083 ** Surface Specifi X-Surf (ft) 4 091	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11 268	112.841 inate Poin	; and Radius =	97.950
Circle ( Failure Point No. 1 2	Center At X = Factor of Safety ** 3.083 ** Surface Specifi X-Surf (ft) 4.091 9.089	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11 149	112.841 inate Poin	; and Radius =	97.950
Circle ( Failure Point No. 1 2 2	Center At X = Factor of Safety ** 3.083 ** Surface Specifi X-Surf (ft) 4.091 9.089 14.080	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.109	112.841 inate Poin	; and Radius =	97.950
Circle ( Failure Point No. 1 2 3 4	Center At X = Factor of Safety ** 3.083 ** Surface Specifi X-Surf (ft) 4.091 9.089 14.089	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416	112.841 inate Poin	; and Radius =	97.950
Circle ( Failure Point No. 1 2 3 4	<pre>Center At X = Factor of Safety **</pre>	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.201	112.841 inate Poin	; and Radius =	97.950
Circle ( Failure Point No. 1 2 3 4 5	<pre>Center At X = Factor of Safety ** 3.083 ** Surface Specifi</pre>	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801	112.841 inate Poin	; and Radius =	97.950
Circle ( Failure Point No. 1 2 3 4 5 6	<pre>Center At X = Factor of Safety ** 3.083 ** Surface Specifi</pre>	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 12.754	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7	Center At X = Factor of Safety ** 3.083 ** Surface Specifi (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 12.252	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8	Center At X = Factor of Safety ** 3.083 ** Surface Specifi (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987 38.908	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8 9	Center At X = Factor of Safety ** 3.083 ** Surface Specifi (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987 38.908 43.796	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8 9 10	Center At X = Factor of Safety ** 3.083 ** Surface Specifi (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987 38.908 43.796 48.646	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11	<pre>Center At X = Factor of Safety ** 3.083 ** Surface Specifi</pre>	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12	<pre>Center At X = Factor of Safety ** 3.083 ** Surface Specifi</pre>	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13	<pre>Center At X = Factor of Safety ** 3.083 ** Surface Specifi</pre>	<pre>33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839</pre>	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	<pre>Center At X = Factor of Safety ** 3.083 ** Surface Specifi</pre>	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	<pre>Center At X = Factor of Safety ** 3.083 ** Surface Specifi</pre>	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Center At X = Factor of Safety ** 3.083 ** Surface Specifi (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987 38.908 43.796 48.646 53.453 58.210 62.913 67.556 72.135 76.642	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	<pre>Center At X = Factor of Safety ** 3.083 ** Surface Specifi</pre>	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867 29.180	112.841 inate Poin	; and Radius =	97.950
Circle ( ** Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	<pre>Center At X = Factor of Safety ** 3.083 ** Surface Specifi</pre>	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867 29.180 31.642	112.841 inate Poin	; and Radius =	97.950
Circle ( ** Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	<pre>Center At X = Factor of Safety ** 3.083 ** Surface Specifi</pre>	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867 29.180 31.642 34.248	112.841 inate Poin	; and Radius = ts	97.950
Circle ( ** Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	<pre>Center At X = Factor of Safety ** 3.083 ** Surface Specifi</pre>	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867 29.180 31.642 34.248 36.997	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Center At X = Factor of Safety ** 3.083 ** Surface Specifi (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987 38.908 43.796 48.646 53.453 58.210 62.913 67.556 72.135 76.642 81.075 85.427 89.694 93.871 97.953	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867 29.180 31.642 34.248 36.997 39.884	112.841 inate Poin	; and Radius =	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Center At X = Factor of Safety ** 3.083 ** Surface Specifi X-Surf (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987 38.908 43.796 48.646 53.453 58.210 62.913 67.556 72.135 76.642 81.075 85.427 89.694 93.871 97.953 99.024	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867 29.180 31.642 34.248 36.997 39.884 40.697	112.841 inate Poin	; and Radius = ts	97.950
Circle ( * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Circle (	Center At X = Factor of Safety ** 3.083 ** Surface Specifi (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987 38.908 43.796 48.646 53.453 58.210 62.913 67.556 72.135 76.642 81.075 85.427 89.694 93.871 97.953 99.024	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867 29.180 31.642 34.248 36.997 39.884 40.697 10.148 - Y -	112.841 inate Poin	; and Radius =	97.950
Circle ( ** Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Circle (	Center At X = Factor of Safety ** 3.083 ** Surface Specifi (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987 38.908 43.796 48.646 53.453 58.210 62.913 67.556 72.135 76.642 81.075 85.427 89.694 93.871 97.953 99.024 Center At X =	33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867 29.180 31.642 34.248 36.997 39.884 40.697 10.148 ; Y =	112.841 inate Poin 159.562	; and Radius = ts ; and Radius =	97.950
Circle ( ** Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Circle (	Center At X = Factor of Safety ** 3.083 ** Surface Specifi X-Surf (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987 38.908 43.796 48.646 53.453 58.210 62.913 67.556 72.135 76.642 81.075 85.427 89.694 93.871 97.953 99.024 Center At X = Factor of Safety	<pre>33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867 29.180 31.642 34.248 36.997 39.884 40.697 10.148 ; Y = *</pre>	112.841 inate Poin 159.562	; and Radius = ts ; and Radius =	97.950
Circle ( ** Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Circle ( **	Center At X = Factor of Safety ** 3.083 ** Surface Specifi X-Surf (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987 38.908 43.796 48.646 53.453 58.210 62.913 67.556 72.135 76.642 81.075 85.427 89.694 93.871 97.953 99.024 Center At X = Factor of Safety ** 3.099 **	<pre>33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867 29.180 31.642 34.248 36.997 39.884 40.697 10.148 ; Y = * *</pre>	112.841 inate Poin 159.562	<pre>; and Radius = ts ; and Radius =</pre>	97.950
Circle ( ** Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Circle ( * Failure	Center At X = Factor of Safety ** 3.083 ** Surface Specifi X-Surf (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987 38.908 43.796 48.646 53.453 58.210 62.913 67.556 72.135 76.642 81.075 85.427 89.694 93.871 97.953 99.024 Center At X = Factor of Safety ** 3.099 ** Surface Specifi	<pre>33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867 29.180 31.642 34.248 36.997 39.884 40.697 10.148 ; Y = * ed By 20 Coord Y Curf</pre>	112.841 inate Poin 159.562 inate Poin	<pre>; and Radius = ts ; and Radius = ts</pre>	97.950
Circle ( ** Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Circle ( * Failure Point	Center At X = Factor of Safety ** 3.083 ** Surface Specifi X-Surf (ft) 4.091 9.089 14.089 19.085 24.070 29.039 33.987 38.908 43.796 48.646 53.453 58.210 62.913 67.556 72.135 76.642 81.075 85.427 89.694 93.871 97.953 99.024 Center At X = Factor of Safety ** 3.099 ** Surface Specifi X-Surf	<pre>33.239 ; Y = * ed By 22 Coord Y-Surf (ft) 11.268 11.149 11.198 11.416 11.801 12.354 13.074 13.959 15.010 16.225 17.603 19.141 20.839 22.694 24.704 26.867 29.180 31.642 34.248 36.997 39.884 40.697 10.148 ; Y = * ed By 20 Coord Y-Surf *</pre>	112.841 inate Poin 159.562 inate Poin	; and Radius = ts ; and Radius = ts	97.950

13.636 14.227 2 18.626 13.909 3 23.625 13.802 13.907 4 28.624 5 33.614 14.223 14.750 6 38.586 7 43.531 15.488 8 48.441 16.434 9 53.306 17.587 10 58.118 18.945 11 62.868 20.506 12 67.548 22.266 13 72.149 24.223 76.664 14 26.373 15 81.083 28.712 16 85.399 31.237 17 89.604 33.941 18 93.691 36.822 97.652 19 39.872 20 98.407 40.506 Circle Center At X = 23.663 ; Y = 131.749 ; and Radius = 117.949 Factor of Safety * * * 3.128 *** Failure Surface Specified By 19 Coordinate Points X-Surf Y-Surf Point No. (ft) (ft) 1 14.545 14.509 2 19.529 14.108 3 24.526 13.937 4 29.526 13.994 5 34.518 14.281 6 39.491 14.797 7 44.436 15.540 8 49.341 16.510 17.703 9 54.196 10 58.992 19.118 63.718 11 20.751 12 68.363 22.599 13 72.920 24.659 14 77.377 26.925 81.725 15 29.394 16 85.955 32.059 34.915 17 90.059 18 94.027 37.957 96.266 39.843 19 Circle Center At X = 25.769 ; Y = 122.899 ; and Radius = 108.970 Factor of Safety *** 3.133 *** Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 9.545 12.959 2 14.537 12.672 3 19.537 12.591 12.717 4 24.535 5 29.524 13.050 б 34.495 13.590 7 39.439 14.334 8 44.348 15.283 9 49.214 16.433 10 54.028 17.784 11 58.782 19.334 12 63.468 21.078 13 68.077 23.015 14 72.603 25.141 77.036 27.453 15 16 81.370 29.946 85.598 17 32.616 18 89.711 35.459 19 93.703 38.469

1

20 94.835 39.399 Circle Center At X = 19.001 ; Y = 133.242 ; and Radius = 120.654 Factor of Safety *** 3.136 *** **** END OF GSTABL7 OUTPUT ****



Safety Factors Are Calculated By The Modified Bishop Method

## JNF3: Sideslope Stability - 2.5:1

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. 12/16/2016 Analysis Run Date: 11:47AM Time of Run: Run By: Insert Name/company Here Input Data Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf3 sideslope.in Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf3 sideslope.OUT Unit System: English Plotted Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf3 sideslope.PLT PROBLEM DESCRIPTION: JNF3: Sideslope Stability -2.5:1BOUNDARY COORDINATES 1 Top Boundaries 3 Total Boundaries X-Left X-Right Boundary Y-Left Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 0.00 0.00 50.00 20.00 1 1 2 0.00 0.00 30.00 0.00 2 30.00 0.00 50.00 20.00 2 3 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) User Specified Y-Plus Value = 25.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (pcf) (psf) (deg) No. (pcf) Param. (psf) No. 28.0 1 120.0 125.0 250.0 0.00 0.0 0 45.0 0.00 2 160.0 160.0 1000.0 0.0 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft)Each Surface Terminates Between X = 22.00(ft)and X = 25.00(ft)and X = 50.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 1.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 1000 Number of Trial Surfaces With Valid FS = 1000 Statistical Data On All Valid FS Values: FS Max = 33.889 FS Min = 2.930 FS Ave = 5.617 Standard Deviation = 3.235 Coefficient of Variation = 57.59 % Failure Surface Specified By 52 Coordinate Points X-Surf Y-Surf Point No. (ft) (ft) 3.111 1 1.244 2 4.098 1.084 3 5.088 0.945 4 6.082 0.828 5 7.077 0.732

	6 7 8 9		8.074 9.073 10.073 11.072	0. 0. 0.	659 607 577 570				
	10 11		12.072 13.072	0. 0.	584 620				
	13		15.067	0.	757				
	15		17.054	0.	982				
	17		19.030	1.	293				
	18		20.012	1.	482 691				
	20		21.962 22.930	1.2.	922 175				
	22 23		23.892 24.848	2. 2.	448 742				
	24 25		25.797 26.738	3. 3.	058 394				
	26 27		27.673 28.599	3. 4.	750 127				
	28 29		29.517 30.425	4. 4.	525 942				
	30 31		31.325 32.215	5. 5.	379 835				
	32		33.094	6. 6	311 806				
	34		34.821	7. 7	320 853				
	36		36.501	8.	404				
	38		38.133	9. 10	561 166				
	40		39.712	10.	788				
	42		41.237	12.	082				
	43		42.702	12.	443				
	45		43.413	14.	866				
	47		44.786	15.	349				
	49 50		46.095	17.	113 890				
	51 52		47.335 47.601	18. 19.	681 040				
	Circle	e Center Factor *** 2	At X = of Safet	10.933 ;y ***	3;Y =	46.200	; and Rad	lius =	45.631
	:	Individua	l data d Water	on the Water	51 sli Tie	ces Tie	Earthqua	ake	
Slice	Width	Weight	Force Top	Force Bot	Force Norm	Force Tan	Force	e Surc Ver	harge Load
No. 1	(ft) 1 0	(lbs) 32.9	(1bs)	(lbs)	(lbs)	(lbs)	(lbs) (	(lbs)	(lbs)
2	1.0	97.8 160 6	0.0	0.0	0.	0.	0.0	0.0	0.0
4	1.0	221.2	0.0	0.0	0.	0.	0.0	0.0	0.0
6	1.0	335.1	0.0	0.0	0.	0.	0.0	0.0	0.0
8	1.0	438.6	0.0	0.0	0.	0.	0.0	0.0	0.0
10 11	1.0	530.9	0.0	0.0	0.	0.	0.0	0.0	0.0
12	1.0	611.3	0.0	0.0	0.	0.	0.0	0.0	0.0
14 15	1.0	679.1 708.3	0.0	0.0	0. 0.	0. 0.	0.0	0.0	0.0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	$\begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0$	734.1 756.7 776.0 792.0 804.7 814.1 820.3 823.2 822.9 819.6 813.1 803.6 791.3 776.0 758.1 737.5 714.4 688.9 661.2 631.3 599.4 565.7 530.3 493.4 455.2 4155.8 375.3 334.1 292.2 249.9			0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		$\begin{array}{c} 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
46 47 48	0.7 0.7 0.6	207.3 164.7 122 3	0.0 0.0	0.0 0.0	0. 0. 0	0. 0. 0	$0.0 \\ 0.0 \\ 0.0 \\ 0.0$	0.0 0.0	0.0
49 50	0.6	80.2	0.0	0.0	0. 0.	0. 0.	0.0	0.0	0.0
51	0.3 Failure	4.0 Surfac	0.0 ce Specifie	0.0 ed By 50 Co	0. ordinate	0. Points	0.0	0.0	0.0
	Point No.	X	K-Surf (ft)	Y-Surf (ft)					
	1 2		3.556	1.422					
	3		5.500	0.953					
	5		7.466	0.589					
	6 7		9.449	0.447					
	8 9		10.445 11.443	0.242 0.180					
	10 11		12.443 13.443	0.144 0.135					
	12 13		14.442 15.441	0.153 0.198					
	14 15		16.439 17.434	0.270 0.368					
	16 17		18.426	0.493					
	18		20.399	0.822					
	20		22.351	1.256					
	22		24.277	1.794					
	24		26.171	2.435					
	25 26		27.105 28.029	2.793 3.176					
	27 28		28.942 29.844	3.584 4.016					
	29 30		30.734 31.611	4.472 4 951					
	31		32.475	5.454					

32	33.326	5.980		
33	34,162	6.529		
34	34 983	7 099		
25	25 790	7.600		
35	35.769	7.092		
36	36.578	8.306		
37	37.351	8.941		
38	38.106	9.596		
39	38.844	10.271		
40	39 563	10 966		
40	40 262	11 690		
41	40.263	11.680		
42	40.944	12.413		
43	41.605	13.163		
44	42.246	13.931		
45	42.866	14.715		
46	43 464	15 516		
40	44 041	16 222		
47	44.041	10.333		
48	44.596	1/.165		
49	45.128	18.012		
50	45.159	18.064		
Circle Ce	enter At X =	13.273; Y =	37.454; and Radius =	37.319
011010 00 Fa	actor of Safety			0,010
ттт Т.С	actor of Sarety	*		
* * *	2.939 **	*		
Failure S	Surface Specifi	ed By 51 Coordi	nate Points	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	2,000	0,800		
2	2.000	0.640		
2	2.907	0.040		
3	3.977	0.502		
4	4.971	0.385		
5	5.966	0.291		
6	6.964	0.219		
7	7 962	0 169		
, 0	0 062	0.141		
0	0.902	0.141		
9	9.962	0.136		
10	10.962	0.152		
11	11.961	0.191		
12	12,959	0.251		
13	13 956	0 334		
14	14 050	0.120		
14	14.950	0.439		
15	15.942	0.566		
16	16.931	0.715		
17	17.916	0.886		
18	18.898	1.079		
19	19 874	1 293		
20	20 946	1 520		
20	20.040	1 707		
21	21.812	1.787		
22	22.773	2.065		
23	23.727	2.365		
24	24.674	2.687		
25	25.613	3.029		
26	26 545	3 391		
20	20.313	2 775		
4/	407 20 204	3.//3		
28	28.384	4.1/8		
29	29.290	4.602		
30	30.186	5.046		
31	31.072	5.510		
32	31.947	5.993		
22	32 812	6 495		
10	32.01A 33 CCF	J. 1 J 7 01 7		
34	33.005	/.UI/		
35	34.507	1.557		
36	35.336	8.116		
37	36.153	8.693		
38	36.956	9.288		
20	27 747	9 901		
40	27.777 20 E00	10 501		
40	30.543	11.150		
41	39.286	11.178		
42	40.034	11.842		
43	40.766	12.522		
44	41.484	13.218		
45	42.186	13.930		

42.872 46 14.658 47 43.542 15.400 48 44.196 16.157 49 44.832 16.929 50 45.451 17.714 51 45.953 18.381 Circle Center At X = 9.718 ; Y = 45.242 ; and Radius = 45.107 Factor of Safety * * * 2.947 *** Failure Surface Specified By 49 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 1 6.222 2.489 7.185 2 2.217 3 8.154 1.973 4 9.130 1.756 5 10.113 1.567 6 11.100 1.406 7 12.091 1.274 8 13.085 1.169 9 14.082 1.093 10 15.081 1.046 11 16.081 1.026 17.081 12 1.036 13 18.080 1.073 14 19.078 1.139 15 20.074 1.234 16 21.066 1.356 17 22.055 1.507 18 23.038 1.686 19 24.017 1.893 24.989 20 2.128 21 25.954 2.390 22 26.911 2.680 27.860 2.996 23 24 28.799 3.340 25 29.728 3.710 26 30.646 4.106 27 31.552 4.528 32.446 28 4.976 29 33.327 5.450 30 34.195 5.948 6.470 31 35.047 32 35.885 7.017 33 36.706 7.587 34 37.511 8.180 35 38.299 8.796 36 39.069 9.434 37 39.820 10.094 38 40.553 10.775 39 41.265 11.476 40 41.958 12.198 42.630 41 12.939 43.280 42 13.698 43 43.908 14.476 44 44.514 15.271 45 45.098 16.084 45.658 46 16.912 47 46.194 17.756 46.705 48 18.616 49 46.753 18.701 Circle Center At X = 16.257 ; Y = 36.174 ; and Radius = 35.148 Factor of Safety 2.961 *** * * * Failure Surface Specified By 51 Coordinate Points X-Surf Point Y-Surf No. (ft) (ft) 1 3.333 1.333 2 4.323 1.189

3

5.315

1.066

4	6.310	0.965		
5	7.307	0.885		
6	8.305	0.826		
7	9.305	0.790		
8	10.304	0.774		
9	11.304	0.780		
10	12.304	0.808		
11	13.303	0.858		
12	14.300	0.928		
13	15.296	1.021		
14	16.290	1.135		
15	17.280	1.270		
16	18.268	1.426		
17	19.252	1.604		
18	20.232	1.803		
19	21.208	2.023		
20	22.178	2.264		
21	23.143	2.526		
22	24.102	2.809		
23	25.055	3.112		
24	26.001	3.436		
25	26,940	3.780		
26	27.872	4.144		
27	28.795	4.528		
28	29.710	4,933		
29	30.615	5.356		
30	31 512	5 799		
31	32.399	6,262		
32	33 275	6 743		
33	34 141	7 243		
34	34 996	7 762		
35	35 840	8 299		
36	36.671	8.854		
37	37 491	9 427		
38	38 298			
30	39 092	10 625		
40	39 873	11 250		
41	40 640	11 891		
42	41 393	12 549		
43	42 132	13 223		
44	42 856	13.223		
45	43 566	14 618		
46	44 259	15 338		
47	44 937	16 073		
48	45 599	16 822		
49	46 245	17 586		
50	46 874	18 363		
51	47 308	18 923		
Circle Cent	ter $\Delta t X =$	10.516 : V =	47 146 ; and Radiu	q = 46.373
Fact	tor of Safety		i, iii , and hadia	5 10.575
***	2 969 **	*		
Failure Su	rface Specifi	ed By 51 Coordi	nate Points	
Point	X-Surf	Y-Surf		
No	(ft)	(ft)		
1	1 222	0 533		
2	2 324	0.395		
3	3 317	0 282		
4	4 313	0 188		
5	5 310	0.115		
6	6,309	0.064		
5 7	7 209	0 035		
, 8	8 308	0 027		
a	9 208	0 040		
10	10 208	0.075		
11	11 206	0 121		
12 12	12 202	0 209		
13	13 298	0 202		
14	14 291	0 429		
15	15 281	0 570		
16	16 267	0 722		
- J		0.100		

18	18.229	1.123				
19	19.203	1.349				
20	20.172	1.596				
21	21.136	1.864				
22	22.093	2.153				
23	23.044	2.462				
24	23.988	2.791				
25	24 925	3 141				
25	25 854	3 510				
20	25.054	3.010				
27	20.775	3.900				
28	27.088	4.309				
29	28.591	4.738				
30	29.485	5.186				
31	30.370	5.653				
32	31.244	6.139				
33	32.107	6.643				
34	32.959	7.167				
35	33.800	7.708				
36	34.629	8.267				
37	35.446	8.844				
38	36 250	9 438				
30	37 041	10 050				
40	37 819	10.678				
41	20 501	11 222				
41	30.304	11.004				
42	39.334	11.984				
43	40.070	12.661				
44	40.791	13.354				
45	41.497	14.062				
46	42.188	14.785				
47	42.863	15.523				
48	43.522	16.275				
49	44.165	17.041				
50	44.791	17.821				
51	44.897	17.959				
				_	D - 11	46 550
Circle	Center At X =	8.185 ; Y =	46.5	77 ; and	Radius =	= 46.550
Circle	Center At X = Factor of Safety	8.185 ; Y =	46.5	77 ; and	Radius =	46.550
Circle *	Center At X = Factor of Safety ** 2.995 ***	8.185 ; Y =	46.5	77 ; and	Radius =	= 46.550
Circle * Failure	Center At X = Factor of Safety ** 2.995 *** Surface Specifie	8.185 ; Y =	46.5 linate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf	8.185 ; Y =	46.5 dinate P	77 ; and oints	Radius =	= 46.550
Failure Point	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft)	8.185 ; Y = d By 48 Coord Y-Surf (ft)	46.5 linate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point No. 1	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133	46.5 linate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point No. 1 2	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6 269	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1 781	46.5 linate P	77 ; and oints	Kadius =	= 46.550
Circle * Failure Point No. 1 2 2	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460	46.5 linate P	77 ; and oints	Kadius =	= 46.550
Circle * Failure Point No. 1 2 3	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 9 172	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170	46.5 linate P	77 ; and oints	Kadius =	= 46.550
Circle * Failure Point No. 1 2 3 4	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.012	46.5 linate P	77 ; and oints	Kadius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 	46.5 linate P	77 ; and oints	Radius =	= 46.550
Failure Point No. 1 2 3 4 5 6	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685	46.5 linate P	77 ; and	Radius =	- 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7	Center At X = Factor of Safety ** 2.995 *** Surface Specifie (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491	46.5 dinate P	77 ; and	Radius =	- 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329	46.5 linate P	77 ; and	Radius =	- 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200	46.5 linate P	77 ; and	Radius =	- 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103	46.5 linate P	77 ; and	Radius =	- 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039	46.5 linate P	77 ; and	Kadius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007	46.5 linate P	77 ; and	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009	46.5 linate P	77 ; and	Radius =	- 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Center At X = Factor of Safety ** 2.995 *** Surface Specifie (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044	46.5 dinate P	77 ; and	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111	46.5 dinate P	77 ; and	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211	46.5 linate P	77 ; and	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344	46.5 linate P	77 ; and	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049 22.035	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344 0.509	46.5 linate P	77 ; and	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049 22.035 23.015	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344 0.509 0.706	46.5 linate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049 22.035 23.015 23.989	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344 0.509 0.706 0.936	46.5 linate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049 22.035 23.015 23.989 24 954	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344 0.509 0.706 0.936 1.197	46.5 linate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049 22.035 23.015 23.989 24.954 25.010	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344 0.509 0.706 0.936 1.197 1.400	46.5 dinate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049 22.035 23.015 23.989 24.954 25.910 26.956	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344 0.509 0.706 0.936 1.197 1.490 1.490 1.914	46.5 Ninate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049 22.035 23.015 23.989 24.954 25.910 26.856 27.71	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344 0.509 0.706 0.936 1.197 1.490 1.814 2.122	46.5 linate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049 22.035 23.015 23.989 24.954 25.910 26.856 27.791	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344 0.509 0.706 0.936 1.197 1.490 1.814 2.169 0.757	46.5 linate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 5	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049 22.035 23.015 23.989 24.954 25.910 26.856 27.791 28.713	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344 0.509 0.706 0.936 1.197 1.490 1.814 2.169 2.555 0.271	46.5 Ninate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049 22.035 23.015 23.989 24.954 25.910 26.856 27.791 28.713 29.623	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344 0.509 0.706 0.936 1.197 1.490 1.814 2.169 2.555 2.971	46.5 linate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049 22.035 23.015 23.989 24.954 25.910 26.856 27.791 28.713 29.623 30.518	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344 0.509 0.706 0.936 1.197 1.490 1.814 2.169 2.555 2.971 3.416	46.5 linate P	77 ; and oints	Radius =	= 46.550
Circle * Failure Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	Center At X = Factor of Safety ** 2.995 *** Surface Specifie X-Surf (ft) 5.333 6.269 7.216 8.173 9.139 10.113 11.094 12.081 13.073 14.068 15.066 16.066 17.066 18.065 19.063 20.058 21.049 22.035 23.015 23.989 24.954 25.910 26.856 27.791 28.713 29.623 30.518 31.398	8.185 ; Y = d By 48 Coord Y-Surf (ft) 2.133 1.781 1.460 1.170 0.912 0.685 0.491 0.329 0.200 0.103 0.039 0.007 0.009 0.044 0.111 0.211 0.344 0.509 0.706 0.936 1.197 1.490 1.814 2.169 2.555 2.971 3.416 3.891	46.5 linate P	77 ; and oints	Radius =	= 46.550

17 17.250 0.918

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Circle Cei Fa	33.110 33.939 34.749 35.540 36.310 37.059 37.786 38.489 39.169 39.825 40.455 41.060 41.638 42.189 42.712 43.207 43.673 44.109 44.134 nter At X = ctor of Safety	4.926 5.484 6.070 6.682 7.320 7.983 8.670 9.381 10.114 10.869 11.645 12.442 13.258 14.093 14.945 15.814 16.699 17.598 17.654 16.517 ; Y =	30.436 ; and Radius =	30.432
* * *	3.006 **	*		
Failure S	urface Specifi	ed By 47 Coordi	nate Points	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
⊥ 2	5.111	2.044		
3	7.020	1,449		
4	7.988	1.196		
5	8.963	0.974		
6	9.944	0.782		
7	10.931	0.622		
8	11.923	0.492		
9	12.918	0.394		
10	13.916	0.326		
	14.915	0.291		
12	15.915	0.280		
14	17 913	0.313		
15	18.909	0.461		
16	19.902	0.581		
17	20.890	0.733		
18	21.873	0.916		
19	22.850	1.129		
20	23.820	1.373		
21	24.782	1.647		
22	25.734	1.952		
23	20.077	2.200		
25	28.528	3.042		
26	29.435	3.463		
27	30.328	3.912		
28	31.207	4.389		
29	32.071	4.894		
30	32.918	5.425		
31	33.748	5.983		
3∠ 33	34.560	6.566 7 175		
34	36 128	7 808		
35	36.881	8.465		
36	37.614	9.145		
37	38.325	9.848		
38	39.014	10.574		
39	39.680	11.320		
40	40.322	12.087		
41	40.939	12.873		
42	41.532	13.679		
43	42.099	14.502		
44 / E	42.039 10 151	16 201		
40	43.134	TO'RAT		

46	43 641	17 075		
47	43.890	17.556		
Circle (	Center At X =	15.558 ; Y =	32.164 ; and Radius =	31.880
H	Factor of Safety			
* *	** 3.007 ***	*		
Failure	Surface Specifie	ed By 49 Coordi	nate Points	
Point	X-Surt	Y-Surf		
NO. 1	(IC) 2 222	(IT) 0 000		
1	2.222	0.889		
2	4 200	0.725		
4	5.194	0.479		
5	6.189	0.389		
6	7.187	0.322		
7	8.186	0.278		
8	9.186	0.258		
9	10.186	0.262		
10	11.186	0.288		
	12.184	0.338		
13	13.102 14 177	0.412		
14	15 170	0.500		
15	16.160	0.771		
16	17.146	0.937		
17	18.128	1.126		
18	19.105	1.339		
19	20.077	1.573		
20	21.043	1.831		
21	22.003	2.111		
22	22.956	2.414		
23 24	23.902	2.730		
25	25.770	3.453		
26	26.691	3.844		
27	27.602	4.255		
28	28.503	4.688		
29	29.395	5.142		
30	30.275	5.616		
31	31.144	6.111		
32	32.001	6.626 7 161		
33	32.040	7.101		
35	34,497	8.290		
36	35.302	8.882		
37	36.093	9.494		
38	36.870	10.124		
39	37.632	10.772		
40	38.378	11.437		
41	39.109	12.120		
42	39.823	12.820		
44	41 202	14 268		
45	41.866	15.016		
46	42.511	15.780		
47	43.139	16.558		
48	43.749	17.351		
49	43.903	17.561		
Circle (	Center At X =	9.54'; Y =	43.019 ; and Radius =	42.762
H * 1	actor of Salety	*		
Failure	Surface Specific	ed By 56 Coordi	nate Points	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	0.444	0.178		
2	1.444	0.145		
3	2.444	0.127		
4	3.444	0.125		
5	4.444	0.139		
0 7	5.443 6 442	0.10/ 0.211		
/	0.114	V • 4 + 1		

8	7.441	0.271							
9	8.438	0.346							
10	9.434	0.436							
	10.428	0.541							
12	12 411	0.002							
13 14	13 400	0.798							
15	14 386	1 116							
16	15 369	1 298							
17	16.350	1,494							
18	17.327	1.706							
19	18.301	1.933							
20	19.271	2.175							
21	20.238	2.432							
22	21.200	2.703							
23	22.158	2.990							
24	23.112	3.291							
25	24.061	3.607							
26	25.005	3.937							
27	25.943	4.282							
28	26.876	4.641							
29	27.804	5.015							
30	28.726	5.402							
31	29.641	5.804							
32	30.551	6.220							
33	31.454	6.650							
34	32.350	7.094							
35	33.239	/.554							
30 27	24.006	0.023							
30	34.990	9,006							
20	36 722	9.000							
40	37 573	10 042							
41	38,417	10.580							
42	39.251	11.130							
43	40.078	11.694							
44	40.895	12.270							
45	41.703	12.858							
46	42.503	13.459							
47	43.293	14.072							
48	44.073	14.697							
49	44.844	15.335							
50	45.605	15.984							
51	46.355	16.644							
52	47.096	17.316							
53	47.826	18.000							
54	48.545	18.694							
55	49.254	19.400							
56	49.735 Conton At X =	19.894				0.000	Dod	_	64 021
CILCIE	Center At X =	3.082 i Y =		05.055	i	and	каαıus	=	04.931
*	** 2 025 ***								
	איא 2.035 אייי ער בפי.5	ΓΑΒΙ.7 ΟΓΙΤΟΓΙΤ	***	*					
		LIUL I I I I I I I I I I I I I I I I I I							



Safety Factors Are Calculated By The Modified Bishop Method
*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. 12/16/2016 Analysis Run Date: Time of Run: 11:52AM 
 Run By:
 Insert Name/company Here

 Input Data Filename:
 y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif
 ic Stabilization\JNF Slope Stability\jnf4 trench backfill.in Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf4 trench backfill.OUT Unit System: English Plotted Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf4 trench backfill.PLT PROBLEM DESCRIPTION: JNF4: Trench Backfill Stability -58% Slope BOUNDARY COORDINATES 1 Top Boundaries 2 Total Boundaries Y-Right Boundarv X-Left Y-Left X-Right Soil Type (ft) (ft) Below Bnd No. (ft) (ft) 0.00 10.00 100.00 68.00 1 1 100.00 58.00 2 2 0.00 0.00 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft)User Specified Y-Plus Value = 25.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 250.0 28.0 120.0 125.0 0.00 0.0 0 1 2 160.0 160.0 1000.0 45.0 0.00 0.0 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 900 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of 90 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft)and X = 45.00(ft)Each Surface Terminates Between X = 50.00(ft)and X = 100.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 5.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 900 Number of Trial Surfaces With Valid FS = 900 Statistical Data On All Valid FS Values: FS Max = 14.901 FS Min = 1.761 FS Ave = 3.446 Standard Deviation = 1.103 Coefficient of Variation = 32.01 % Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 14.157 18.211 1 19.054 2 19.220 3 23.914 20.398 4 28.730 21.742 33.497 5 23.251

	6 7 8 9 10 11 12 13		38.208 42.860 47.445 51.960 56.397 60.752 65.020 69.196	24. 26. 28. 30. 33. 35. 38. 41.	924 758 751 901 206 662 266 016					
	14		73.274	43.	909					
	15		//.251 81 120	46. 50	940 107					
	17		84.878	53.	405					
	18		88.521	56.	830					
	19		92.043	60. 64	379					
	20		97.706	66.	670					
	Circle	e Center	At X =	-12.669	; Y =	16	50.772	; and Ra	adius =	145.063
		Factor	of Safet	СУ * * *						
		Individua	al data d	on the	20 sl	ices	5			
			Water	Water	Tie	Γ	ſie	Earthqu	ıake	
014 -	width	Majabe	Force	Force	Force	Fo	orce	Ford	ce Surc	charge
No.	(ft)	(lbs)	(lbs)	(lbs)	(lbs)	۱ ( )	bs)	(lbs)	(lbs)	(lbs)
1	4.9	538.0	0.0	0.0	0		0.	0.0	0.0	0.0
2	4.9	1546.3	0.0	0.0	0	•	0.	0.0	0.0	0.0
3	4.8	2425.4 3174 1	0.0	0.0	0	•	0.	0.0	0.0	0.0
5	4.7	3792.3	0.0	0.0	0	•	0.	0.0	0.0	0.0
6	4.7	4280.6	0.0	0.0	0	•	0.	0.0	0.0	0.0
7	4.6	4640.9	0.0	0.0	0	•	0.	0.0	0.0	0.0
8 9	4.5	48/5.8	0.0	0.0	0	•	0.	0.0	0.0	0.0
10	4.4	4985.6	0.0	0.0	0	•	0.	0.0	0.0	0.0
11	4.3	4870.6	0.0	0.0	0	•	0.	0.0	0.0	0.0
12	4.2	4650.7	0.0	0.0	0	•	0.	0.0	0.0	0.0
$13 \\ 14$	4.1	4333.2 3926.0	0.0	0.0	0	•	0.	0.0	0.0	0.0
15	3.9	3438.1	0.0	0.0	0	•	0.	0.0	0.0	0.0
16	3.8	2879.0	0.0	0.0	0	•	0.	0.0	0.0	0.0
18	3.6	1588 6	0.0	0.0	0	•	0.	0.0	0.0	0.0
19	3.4	879.4	0.0	0.0	0	•	0.	0.0	0.0	0.0
20	2.3	177.8	0.0	0.0	0	•	0.	0.0	0.0	0.0
	Failu	re Surfac	ce Specit	Eied By 1	9 Coord	inat	e Poir	nts		
	No	. 2	(ft)	(ft.)	T					
	1		23.258	23.	490					
	2		28.187	24.	334					
	3		33.075	25. 26	385 639					
	5		42.699	28.	094					
	6		47.417	29.	749					
	7		52.062	31.	600 644					
	9		61.099	35.	877					
	10		65.475	38.	295					
	11		69.746	40.	895					
	13		73.904	43. 46.	671 619					
	14		81.854	49.	733					
	15		85.632	53.	009					
	16		89.269	56. 60	440					
	18		96.097	63.	743					
	19		99.238	67.	558					
	Circle	e Center	At X =	5.565	; Y =	14	11.532	; and Ra	adius =	119.360
		ractor *** 1	UL Salei	-Y ***						
	Failu	re Surfac	ce Speci	Eied By 2	0 Coord	inat	e Poir	nts		

Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Circle Cen Fac	X-Surf (ft) 5.056 9.976 14.856 19.689 24.466 29.181 33.825 38.391 42.871 47.259 51.548 55.730 59.798 63.747 67.570 71.261 74.814 78.222 81.482 82.315 tter At X =	Y-Surf (ft) 12.933 13.824 14.912 16.195 17.670 19.336 21.189 23.227 25.446 27.843 30.413 33.154 36.060 39.127 42.349 45.723 49.241 52.899 56.691 57.743 -14.670 ; Y =	135.951 ; and Radius =	= 124.590
***	1.777 **	*		
Failure Su	rface Specifi	ed By 24 Coord	inate Points	
No.	(ft)	(ft.)		
1	3.539	12.053		
2	8.375	13.324		
3	13.177	14.717		
4 5	22.668	17.864		
6	27.351	19.616		
7	31.988	21.486		
8	36.577	23.473		
9	41.113	25.574		
10 11	45.596 50 021	27.790		
12	54.385	32.557		
13	58.687	35.106		
14	62.923	37.763		
15	67.090	40.525		
17	75.209	46.362		
18	79.156	49.432		
19	83.023	52.601		
20	86.810	55.866		
22	90.512	62.679		
23	97.657	66.222		
24	98.538	67.152		
Circle Cen	iter At X =	-44.304; Y =	203.987 ; and Radius =	= 197.807
Fac ***	tor of Safety 1 782 **	*		
Failure Su	rface Specifi	ed By 20 Coord	inate Points	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
⊥ 2	8.596 13 487	14.985 16 021		
3	18.339	17.228		
4	23.145	18.607		
5	27.900	20.154		
ю 7	32.591 37 930	21.869 23 748		
8	41.794	25.790		
9	46.283	27.992		
10	50.691	30.352		
11	55.013	32.866		
12	59.244	35.530		

38.343 13 63.378 14 67.410 41.300 71.334 15 44.398 75.147 47.633 16 17 78.843 51.000 82.418 18 54.496 19 85.867 58.116 20 88.953 61.593 Circle Center At X = -18.227 ; Y = 153.808 ; and Radius = 141.390 Factor of Safety *** 1.802 *** Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 17.697 1 20.264 2 22.591 21.285 27.446 3 22.481 4 32.254 23.853 37.010 5 25.398 6 41.706 27.114 7 46.337 28.998 8 50.897 31.049 9 55.380 33.263 35.639 10 59.780 38.171 11 64.091 12 68.308 40.858 13 72.424 43.696 14 76.436 46.681 15 80.336 49.809 84.121 16 53.076 17 87.785 56.478 91.324 60.010 18 19 94.733 63.668 20 96.957 66.235 Circle Center At X = -7.998; Y = 155.878; and Radius = 138.027Factor of Safety * * * 1.806 *** Failure Surface Specified By 18 Coordinate Points Point X-Surf Y-Surf (ft) (ft) No. 11.629 16.745 1 2 16.570 17.510 21.469 18.509 3 4 26.315 19.741 5 31.097 21.201 6 35.804 22.888 7 40.426 24.796 8 44.951 26.923 9 49.370 29.262 10 53.673 31.809 11 57.849 34.558 12 61.890 37.503 65.786 13 40.637 14 69.529 43.952 15 73.109 47.442 76.520 16 51.098 17 79.752 54.913 18 81.616 57.337 -1.907 ; Y = 120.713 ; and Radius = 104.846 Circle Center At X = Factor of Safety *** 1.811 *** Failure Surface Specified By 16 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 1 21.236 22.317 26.211 22.815 2 3 31.146 23.618 4 36.023 24.721 5 40.823 26.121 б 45.528 27.813

```
29.789
   7
             50.121
   8
             54.584
                         32.044
   9
            58.900
                         34.567
  10
            63.054
                        37.350
  11
            67.030
                        40.382
  12
            70.812
                        43.653
  13
             74.387
                         47.148
             77.741
  14
                         50.857
             80.861
                        54.763
  15
            83.396
  16
                        58.370
                    15.614 ; Y = 103.623 ; and Radius = 81.501
Circle Center At X =
     Factor of Safety
     * * *
            1.832 ***
Failure Surface Specified By 17 Coordinate Points
          X-Surf
 Point
                     Y-Surf
  No.
            (ft)
                        (ft)
             2.528
                         11.466
   1
   2
              7.490
                         12.083
                        12.981
   3
            12.409
   4
            17.269
                        14.155
   5
            22.055
                        15.602
            26.751
   6
                        17.319
   7
             31.342
                         19.298
            35.814
                        21.534
   8
   9
            40.153
                        24.020
  10
            44.343
                        26.748
  11
            48.372
                        29.709
  12
            52.228
                         32.893
  13
            55.896
                         36.290
            59.367
  14
                        39.889
  15
            62.627
                        43.680
             65.669
                        47.648
  16
  17
             66.162
                        48.374
Circle Center At X =
                      -5.880 ; Y = 99.322 ; and Radius = 88.257
     Factor of Safety
           1.843 ***
     * * *
Failure Surface Specified By 21 Coordinate Points
 Point
          X-Surf Y-Surf
  No.
             (ft)
                        (ft)
   1
             12.135
                         17.038
   2
            17.002
                        18.184
   3
            21.829
                        19.487
            26.611
   4
                         20.947
   5
            31.343
                         22.561
            36.021
                        24.329
   6
   7
            40.638
                        26.247
   8
            45.190
                        28.315
                        30.529
   9
            49.673
   10
            54.082
                         32.888
  11
            58.411
                         35.389
  12
            62.657
                        38.030
  13
            66.815
                        40.807
            70.880
  14
                        43.718
  15
             74.849
                         46.759
            78.717
  16
                         49.928
  17
            82.479
                        53.221
  18
             86.133
                         56.634
  19
             89.673
                        60.165
  20
             93.097
                         63.809
   21
             93.435
                         64.192
Circle Center At X = -20.669 ; Y = 167.285 ; and Radius = 153.786
      Factor of Safety
     * * *
          1.844 ***
         **** END OF GSTABL7 OUTPUT ****
```



Safety Factors Are Calculated By The Modified Bishop Method

## JNF4: Sideslope Stability - 3:1

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 12/16/2016 11:50AM Time of Run: Insert Name/company Here Run By: Input Data Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf4 sideslope.in Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf4 sideslope.OUT Unit System: English Plotted Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf4 sideslope.PLT PROBLEM DESCRIPTION: JNF4: Sideslope Stability -3:1 BOUNDARY COORDINATES 1 Top Boundaries 3 Total Boundaries X-Left Y-Left X-Right Y-Right Soil Type Boundary No. (ft) (ft) (ft) (ft) Below Bnd 15.00 45.00 1 0.00 0.00 1 2 0.00 0.00 30.00 0.00 2 3 30.00 0.00 45.00 15.00 2 Default Y-Origin = 0.00(ft)Default X-Plus Value = 0.00(ft) User Specified Y-Plus Value = 25.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (psf) No. (pcf) (pcf) (deg) Param. (psf) No. 1 120.0 125.0 250.0 28.0 0.00 0.0 0 45.0 160.0 1000.0 0.00 2 160.0 0.0 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft)and X = 22.00(ft)Each Surface Terminates Between X = 23.00(ft) and X = 45.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft)1.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 1000 Number of Trial Surfaces With Valid FS = 1000 Statistical Data On All Valid FS Values: FS Max = 90.049 FS Min = 3.739 FS Ave = 7.836 Standard Deviation = 6.648 Coefficient of Variation = 84.83 % Failure Surface Specified By 43 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 1.852 1 5.556 2 6.510 1.553 1.285 7.473 3 4 8.444 1.046

	5 6 7 8 9 10 11 12 13 14		9.422 10.406 11.395 12.388 13.384 14.383 15.383 16.383 17.382 18.380	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	837 658 511 393 307 251 226 232 269 337				
	15 16 17 18 19 20 21 22 23		19.375 20.366 21.353 22.335 23.310 24.278 25.238 26.189 27.130	0. 0. 0. 1. 1. 1. 1. 2.	436 566 726 916 137 388 668 979 318				
	24 25 26 27 28 29 30 31 32		28.059 28.977 29.882 30.774 31.651 32.513 33.359 34.188 34.999	2. 3. 3. 4. 5. 6.	686 083 508 961 442 949 482 042 626				
	33 34 35 36 37 38 39 40 41		35.791 36.565 37.318 38.051 38.763 39.452 40.119 40.762 41.381	7. 7. 8. 9. 9. 10. 11. 12.	236 870 527 208 910 635 380 146 931				
	42 43 Circl	e Center Factor *** Individua	41.976 42.208 At X = of Safet 3.739	12. 13. 14. 15.684 ty ***	735 069 ; Y = 42 slie	32.564 ces	; and Ra	dius =	32.339
Slice No.	Width (ft)	Weight (1bs)	Water Force Top (lbs)	Water Force Bot (lbs)	Tie Force Norm (lbs)	Tie Force Tan (lbs)	Earthqu Forc Hor (lbs)	ake e Suro Ver (lbs)	charge Load (lbs)
1 2 3 4 5 6 7 8 9 10 11 12	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	35.3 105.4 173.4 239.0 301.9 361.9 418.5 471.7 521.1 566.5 607.8 644.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 14 15 16 17 18 19 20 21 22 23	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9	677.2 705.2 728.5 747.2 761.1 770.2 774.7 774.5 769.8 760.6 747.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	729.3 707.5 682.0 652.9 620.4 584.9 546.6 505.9 463.0 418.3 372.1 324.9 276.9 228.6 180.4 132.6 85.6 40.0 3.6 Surface X- () 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			
	39 40 41 42 43 44 45	4 4 4 4 4 4 4 4	0.955 1.692 2.411 3.113 3.797 4.462 4.639	11.112 11.788 12.483 13.195 13.925 14.671 14.880					
	Circle ( I	Center A Factor o ** 3.	t X = 1 f Safety 768 ***	4.242 ; Y	= 4	0.939 ; a	nd Radiu	.s =	40.041

Failure	Surface Specifie	ed By 42 Coordi	inate Points	
Point	X-Surf	Y-Surf		
No.	(it)	(it)		
1 2	/.556	2.519		
2	8.4/8	2.133		
3	9.414 10 262	1.701		
5	11 222	1 1 9 1		
5	12 201	1.101		
7	13 268	0.934		
, 8	14 252	0.722		
9	15 243	0.340		
10	16 237	0.107		
11	17.235	0.236		
12	18.235	0.206		
13	19.235	0.212		
14	20.234	0.254		
15	21.231	0.333		
16	22.224	0.449		
17	23.212	0.600		
18	24.195	0.788		
19	25.169	1.011		
20	26.135	1.270		
21	27.091	1.564		
22	28.035	1.893		
23	28.967	2.256		
24	29.885	2.653		
25	30.788	3.083		
26	31.674	3.546		
27	32.543	4.041		
28	33.393	4.567		
29	34.224	5.124		
30	35.033	5.711		
31	35.821	6.327		
32	36.586	6.972		
33	37.326	7.644		
34	38.041	8.343		
35	38.731	9.067		
36	39.393	9.816		
37	40.028	10.589		
38	40.634	11.385		
39	41.210	12.202		
40	41.757	13.039 13.007		
41 40	42.272	14 124		
44 Ciralo (	42.403	14.134 10 570 · V -	27  EE6 · and Padius - $27 252$	
CIICIE (	Eastor of Safoty	10.570 / 1 -	27.550 / and Radius - 27.555	
*:	** 2 77 <i>1</i> ***			
Failura	Surface Specifie	d By 42 Coordi	inate Doints	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	6.889	2.296		
2	7.829	1.955		
3	8.780	1.646		
4	9.741	1.369		
5	10.711	1.126		
6	11.689	0.917		
7	12.673	0.741		
8	13.663	0.599		
9	14.657	0.491		
10	15.654	0.417		
11	16.654	0.377		
12	17.654	0.372		
13	18.653	0.401		
14	19.651	0.464		
15	20.646	0.562		
16	21.638	0.693		
17	22.624	0.859		
18	23.604	1.058		
19	24.576	1.291		

Factor of Safety *** $3.782$ *** Failure Surface Specified By 42 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 3.556 1.185 2 4.527 0.947 3 5.504 0.735 4 6.487 0.552 5 7.475 0.396 6 8.467 0.268 7 9.462 0.169 8 10.459 0.097 9 11.458 0.053 10 12.458 0.051 12 14.457 0.092 13 15.455 0.161 14 16.450 0.258 15 17.442 0.383 16 18.430 0.536 17 19.414 0.717 18 20.392 0.926 19 21.364 1.162 20 22.328 1.425 21 23.285 1.715 22 24.234 2.033 23 25.173 2.376 24 26.102 2.747 25 27.020 3.143 26 27.926 3.556 27 28.821 4.012 28 29.702 4.485 29 30.570 4.982 30 31.423 5.503 31 42.626 0.483 32 33.084 6.616 33 3.3.891 7.208 34 4.680 7.822 35 5.452 8.458 36 6.626 9.115 37 36.940 9.794 38 37.655 10.493 39 38.350 11.212 40 39.025 11.950	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 Circle	25.540 26.494 27.438 28.369 29.288 30.192 31.081 31.954 32.810 33.647 34.466 35.264 36.040 36.795 37.527 38.235 38.918 39.576 40.208 40.812 41.389 41.938 41.966 Center At X = 1 ⁻	1.557 1.856 2.188 2.551 2.947 3.374 3.831 4.319 4.837 5.383 5.958 6.561 7.191 7.847 8.528 9.235 9.965 10.718 11.493 12.290 13.106 13.943 13.989 7.307 ; Y =	. 29.	. 502	; and	Radius	=	29.132
xxx $3.782$ $xxx$ PointX-SurfY-SurfNo.(ft)(ft)13.5561.18524.5270.94735.5040.73546.4870.55257.4750.39668.4670.26879.4620.169810.4590.097911.4580.0531012.4580.0381113.4580.0511214.4570.0921315.4550.1611416.4500.2581517.4420.3831618.4300.5361719.4140.7171820.3920.9261921.3641.1622022.3281.4252123.2851.7152224.2342.0332325.1732.37624261022728.8214.0122829.7024.4852930.5704.9823031.4235.5033132.2626.048323.0846.616333.8917.2083434.6807.8223535.4528.4583636.2059.1153736.9409.7943837.65510.4933938.35011.2124039.02511.950		Factor of Safety							
PointX-SurfY-SurfNo.(ft)(ft)13.5561.18524.527 $0.947$ 35.504 $0.735$ 46.487 $0.552$ 57.475 $0.396$ 68.467 $0.268$ 79.462 $0.169$ 810.459 $0.097$ 911.458 $0.053$ 1012.458 $0.038$ 1113.458 $0.051$ 1214.457 $0.092$ 1315.455 $0.161$ 1416.450 $0.258$ 1517.442 $0.383$ 1618.430 $0.536$ 1719.414 $0.717$ 1820.392 $0.926$ 1921.364 $1.162$ 2022.328 $1.425$ 2123.285 $1.715$ 2224.234 $2.033$ 2325.173 $2.376$ 2426 $26$ 29 $30.570$ $4.982$ 30 $31.423$ $5.503$ 31 $32.262$ $6.048$ $32$ $33.084$ $6.616$ $33$ $3.891$ $7.208$ $34$ $34.680$ $7.822$ $35$ $35.452$ $8.458$ $36$ $36.205$ $9.115$ $37$ $36.940$ $9.794$ $38$ $37.655$ $10.493$ $39$ $8.350$ $11.212$ $40$ $39.025$ $11.950$	* Failure	** 3.782 *** Surface Specified	By 42 Coor	dinate	Poir	nts			
No.(ft)(ft)1 $3.556$ $1.185$ 2 $4.527$ $0.947$ 3 $5.504$ $0.735$ 4 $6.487$ $0.552$ 5 $7.475$ $0.396$ 6 $8.467$ $0.268$ 7 $9.462$ $0.169$ 8 $10.459$ $0.097$ 9 $11.458$ $0.033$ 10 $12.458$ $0.038$ 11 $13.458$ $0.051$ 12 $14.457$ $0.092$ 13 $15.455$ $0.161$ 14 $16.450$ $0.258$ 15 $17.442$ $0.383$ 16 $18.430$ $0.536$ 17 $19.414$ $0.717$ 18 $20.392$ $0.926$ 19 $21.364$ $1.162$ 20 $22.328$ $1.425$ 21 $23.285$ $1.715$ 22 $24.234$ $2.033$ 23 $25.173$ $2.376$ 24 $26.102$ $2.747$ 25 $27.020$ $3.143$ 26 $27.926$ $3.565$ 27 $28.821$ $4.012$ 28 $29.702$ $4.485$ 29 $30.570$ $4.982$ 30 $31.423$ $5.503$ 31 $32.262$ $6.048$ 32 $33.084$ $6.616$ 33 $33.891$ $7.208$ 34 $34.680$ $7.822$ 35 $35.452$ $8.458$ 36 $36.205$ $9.115$ 37 $36.940$ $9.794$ 38 $37.655$ $10.493$ <	Point	X-Surf Y	Y-Surf						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	(ft)	(ft)						
35.5040.73546.4870.55257.4750.39668.4670.26879.4620.169810.4590.097911.4580.0511012.4580.0381113.4580.0511214.4570.0921315.4550.1611416.4500.2581517.4420.3831618.4300.5361719.4140.7171820.3920.9261921.3641.1622123.2851.7152224.2342.0332325.1732.3762426.1022.7472527.0203.1432627.9263.5652728.8214.0122829.7024.4852930.5704.9823031.4235.5033132.2626.048323.0846.616333.8917.2083434.6807.8223535.4528.4583636.2059.1153736.9409.7943837.65510.4933938.35011.2124039.02511.950	⊥ 2	3.556	1.185						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	5.504	0.735						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6.487	0.552						
b $6.467$ $0.288$ 7 $9.462$ $0.169$ 8 $10.459$ $0.097$ 9 $11.458$ $0.038$ 10 $12.458$ $0.038$ 11 $13.458$ $0.051$ 12 $14.457$ $0.992$ 13 $15.455$ $0.161$ 14 $16.450$ $0.258$ 15 $17.442$ $0.383$ 16 $18.430$ $0.536$ 17 $19.414$ $0.717$ 18 $20.392$ $0.926$ 19 $21.364$ $1.162$ 20 $22.328$ $1.425$ 21 $23.285$ $1.715$ 22 $24.234$ $2.033$ 23 $25.173$ $2.376$ 24 $26.102$ $2.747$ 25 $27.020$ $3.143$ 26 $27.926$ $3.565$ 27 $28.821$ $4.012$ 28 $29.702$ $4.485$ 29 $30.570$ $4.982$ 30 $31.423$ $5.503$ 31 $32.262$ $6.048$ 32 $33.084$ $6.616$ 33 $33.891$ $7.208$ 34 $34.680$ $7.822$ 35 $35.452$ $8.458$ 36 $36.205$ $9.115$ 37 $36.940$ $9.794$ 38 $37.655$ $10.493$ 39 $38.350$ $11.212$ 40 $39.025$ $11.950$	5	7.475	0.396						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 7	8.467	0.268 0.169						
9 $11.458$ $0.053$ 10 $12.458$ $0.038$ 11 $13.458$ $0.051$ 12 $14.457$ $0.092$ 13 $15.455$ $0.161$ 14 $16.450$ $0.258$ 15 $17.442$ $0.383$ 16 $18.430$ $0.536$ 17 $19.414$ $0.717$ 18 $20.392$ $0.926$ 19 $21.364$ $1.162$ 20 $22.328$ $1.425$ 21 $23.285$ $1.715$ 22 $24.234$ $2.033$ 23 $25.173$ $2.376$ 24 $26.102$ $2.747$ 25 $27.020$ $3.143$ 26 $27.926$ $3.565$ 27 $28.821$ $4.012$ 28 $29.702$ $4.485$ 29 $30.570$ $4.982$ 30 $31.423$ $5.503$ 31 $32.262$ $6.048$ 32 $33.084$ $6.616$ 33 $33.891$ $7.208$ 34 $34.680$ $7.822$ 35 $35.452$ $8.458$ 36 $36.205$ $9.115$ 37 $36.940$ $9.794$ 38 $37.655$ $10.493$ 39 $38.350$ $11.212$ 40 $39.025$ $11.950$	8	10.459	0.097						
10 $12,458$ $0.038$ $11$ $13,458$ $0.051$ $12$ $14,457$ $0.092$ $13$ $15,455$ $0.161$ $14$ $16,450$ $0.258$ $15$ $17,442$ $0.383$ $16$ $18,430$ $0.536$ $17$ $19,414$ $0.717$ $18$ $20.392$ $0.926$ $19$ $21.364$ $1.162$ $20$ $22.328$ $1.425$ $21$ $23.285$ $1.715$ $22$ $24.234$ $2.033$ $23$ $25.173$ $2.376$ $24$ $26.102$ $2.747$ $25$ $27.020$ $3.143$ $26$ $27.926$ $3.565$ $27$ $28.821$ $4.012$ $28$ $29.702$ $4.485$ $29$ $30.570$ $4.982$ $30$ $31.423$ $5.503$ $31$ $32.262$ $6.048$ $32$ $33.084$ $6.616$ $33$ $33.891$ $7.208$ $34$ $34.680$ $7.822$ $35$ $35.452$ $8.458$ $36$ $36.205$ $9.115$ $37$ $36.940$ $9.794$ $38$ $37.655$ $10.493$ $39$ $38.350$ $11.212$ $40$ $39.025$ $11.950$ $41$ $39.678$ $12.707$	9	11.458	0.053						
11 $13.458$ $0.051$ 12 $14.457$ $0.092$ 13 $15.455$ $0.161$ 14 $16.450$ $0.258$ 15 $17.442$ $0.383$ 16 $18.430$ $0.536$ 17 $19.414$ $0.717$ 18 $20.392$ $0.926$ 19 $21.364$ $1.162$ 20 $22.328$ $1.425$ 21 $23.285$ $1.715$ 22 $24.234$ $2.033$ 23 $25.173$ $2.376$ 24 $26.102$ $2.747$ 25 $27.020$ $3.143$ 26 $27.926$ $3.565$ 27 $28.821$ $4.012$ 28 $29.702$ $4.485$ 29 $30.570$ $4.982$ 30 $31.423$ $5.503$ 31 $32.262$ $6.048$ 32 $33.891$ $7.208$ 34 $34.680$ $7.822$ 35 $35.452$ $8.458$ 36 $36.205$ $9.115$ 37 $36.940$ $9.794$ 38 $37.655$ $10.493$ 39 $38.350$ $11.212$ 40 $39.025$ $11.950$	10	12.458	0.038						
12 $13$ $15$ $0.052$ $13$ $15.455$ $0.161$ $14$ $16.450$ $0.258$ $15$ $17.442$ $0.383$ $16$ $18.430$ $0.536$ $17$ $19.414$ $0.717$ $18$ $20.392$ $0.926$ $19$ $21.364$ $1.162$ $20$ $22.328$ $1.425$ $21$ $23.285$ $1.715$ $22$ $24.234$ $2.033$ $23$ $25.173$ $2.376$ $24$ $26.102$ $2.747$ $25$ $27.020$ $3.143$ $26$ $27.926$ $3.565$ $27$ $28.821$ $4.012$ $28$ $29.702$ $4.485$ $29$ $30.570$ $4.982$ $30$ $31.423$ $5.503$ $31$ $32.262$ $6.048$ $32$ $33.084$ $6.616$ $33$ $33.891$ $7.208$ $34$ $34.680$ $7.822$ $35$ $35.452$ $8.458$ $36$ $36.205$ $9.115$ $37$ $36.940$ $9.794$ $38$ $37.655$ $10.493$ $39$ $38.350$ $11.212$ $40$ $39.678$ $12.707$	⊥⊥ 12	13.458	0.051						
14 $16.450$ $0.258$ $15$ $17.442$ $0.383$ $16$ $18.430$ $0.536$ $17$ $19.414$ $0.717$ $18$ $20.392$ $0.926$ $19$ $21.364$ $1.162$ $20$ $22.328$ $1.425$ $21$ $23.285$ $1.715$ $22$ $24.234$ $2.033$ $23$ $25.173$ $2.376$ $24$ $26.102$ $2.747$ $25$ $27.020$ $3.143$ $26$ $27.926$ $3.565$ $27$ $28.821$ $4.012$ $28$ $29.702$ $4.485$ $29$ $30.570$ $4.982$ $30$ $31.423$ $5.503$ $31$ $32.262$ $6.048$ $32$ $33.084$ $6.616$ $33$ $33.891$ $7.208$ $34$ $34.680$ $7.822$ $35$ $35.452$ $8.458$ $36$ $36.205$ $9.115$ $37$ $36.940$ $9.794$ $38$ $37.655$ $10.493$ $39$ $38.350$ $11.212$ $40$ $39.025$ $11.950$ $41$ $39.678$ $12.707$	13	15.455	0.161						
15 $17.442$ $0.383$ $16$ $18.430$ $0.536$ $17$ $19.414$ $0.717$ $18$ $20.392$ $0.926$ $19$ $21.364$ $1.162$ $20$ $22.328$ $1.425$ $21$ $23.285$ $1.715$ $22$ $24.234$ $2.033$ $23$ $25.173$ $2.376$ $24$ $26.102$ $2.747$ $25$ $27.020$ $3.143$ $26$ $27.926$ $3.565$ $27$ $28.821$ $4.012$ $28$ $29.702$ $4.485$ $29$ $30.570$ $4.982$ $30$ $31.423$ $5.503$ $31$ $32.262$ $6.048$ $32$ $33.084$ $6.616$ $33$ $33.891$ $7.208$ $34$ $34.680$ $7.822$ $35$ $35.452$ $8.458$ $36$ $36.205$ $9.115$ $37$ $36.940$ $9.794$ $38$ $37.655$ $10.493$ $39$ $38.350$ $11.212$ $40$ $39.025$ $11.950$ $41$ $39.678$ $12.707$	14	16.450	0.258						
16 $18, 430$ $0.536$ $17$ $19, 414$ $0.717$ $18$ $20.392$ $0.926$ $19$ $21.364$ $1.162$ $20$ $22.328$ $1.425$ $21$ $23.285$ $1.715$ $22$ $24.234$ $2.033$ $23$ $25.173$ $2.376$ $24$ $26.102$ $2.747$ $25$ $27.020$ $3.143$ $26$ $27.926$ $3.565$ $27$ $28.821$ $4.012$ $28$ $29.702$ $4.485$ $29$ $30.570$ $4.982$ $30$ $31.423$ $5.503$ $31$ $32.262$ $6.048$ $32$ $33.084$ $6.616$ $33$ $33.891$ $7.208$ $34$ $34.680$ $7.822$ $35$ $35.452$ $8.458$ $36$ $36.205$ $9.115$ $37$ $36.940$ $9.794$ $38$ $37.655$ $10.493$ $39$ $38.350$ $11.212$ $40$ $39.025$ $11.950$ $41$ $39.678$ $12.707$	15	17.442	0.383						
17 $127414$ $0.117$ $18$ $20.326$ $0.926$ $19$ $21.364$ $1.162$ $20$ $22.328$ $1.425$ $21$ $23.285$ $1.715$ $22$ $24.234$ $2.033$ $23$ $25.173$ $2.376$ $24$ $26.102$ $2.747$ $25$ $27.020$ $3.143$ $26$ $27.926$ $3.565$ $27$ $28.821$ $4.012$ $28$ $29.702$ $4.485$ $29$ $30.570$ $4.982$ $30$ $31.423$ $5.503$ $31$ $32.262$ $6.048$ $32$ $33.084$ $6.616$ $33$ $33.891$ $7.208$ $34$ $34.680$ $7.822$ $35$ $35.452$ $8.458$ $36$ $36.205$ $9.115$ $37$ $36.940$ $9.794$ $38$ $37.655$ $10.493$ $39$ $38.350$ $11.212$ $40$ $39.025$ $11.950$ $41$ $39.678$ $12.707$	16 17	18.430	0.536						
19 $21.364$ $1.162$ 20 $22.328$ $1.425$ 21 $23.285$ $1.715$ 22 $24.234$ $2.033$ 23 $25.173$ $2.376$ 24 $26.102$ $2.747$ 25 $27.020$ $3.143$ 26 $27.926$ $3.565$ 27 $28.821$ $4.012$ 28 $29.702$ $4.485$ 29 $30.570$ $4.982$ 30 $31.423$ $5.503$ 31 $32.262$ $6.048$ 32 $33.084$ $6.616$ 33 $33.891$ $7.208$ 34 $34.680$ $7.822$ 35 $35.452$ $8.458$ 36 $36.205$ $9.115$ 37 $36.940$ $9.794$ 38 $37.655$ $10.493$ 39 $38.350$ $11.212$ 40 $39.025$ $11.950$ 41 $39.678$ $12.707$	18	20.392	0.926						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	21.364	1.162						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	22.328	1.425						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 22	23.285	1./15						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	25.173	2.376						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	26.102	2.747						
26 $27.926$ $3.565$ $27$ $28.821$ $4.012$ $28$ $29.702$ $4.485$ $29$ $30.570$ $4.982$ $30$ $31.423$ $5.503$ $31$ $32.262$ $6.048$ $32$ $33.084$ $6.616$ $33$ $33.891$ $7.208$ $34$ $34.680$ $7.822$ $35$ $35.452$ $8.458$ $36$ $36.205$ $9.115$ $37$ $36.940$ $9.794$ $38$ $37.655$ $10.493$ $39$ $38.350$ $11.212$ $40$ $39.025$ $11.950$ $41$ $39.678$ $12.707$	25	27.020	3.143						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 27	27.926	3.565						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	29.702	4.485						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	30.570	4.982						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	31.423	5.503						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3⊥ 32	33.084	6.048 6.616						
34       34.680       7.822         35       35.452       8.458         36       36.205       9.115         37       36.940       9.794         38       37.655       10.493         39       38.350       11.212         40       39.025       11.950         41       39.678       12.707	33	33.891	7.208						
35       35.452       8.458         36       36.205       9.115         37       36.940       9.794         38       37.655       10.493         39       38.350       11.212         40       39.025       11.950         41       39.678       12.707	34	34.680	7.822						
30       30.205       9.115         37       36.940       9.794         38       37.655       10.493         39       38.350       11.212         40       39.025       11.950         41       39.678       12.707	35	35.452	8.458						
38       37.655       10.493         39       38.350       11.212         40       39.025       11.950         41       39.678       12.707	30 37	36.940	9.794						
39       38.350       11.212         40       39.025       11.950         41       39.678       12.707	38	37.655	10.493						
40 39.025 11.950 41 39.678 12.707	39	38.350	11.212						
	40 41	39.025	12 707						

42	40.260	13.420						
Circle	Center At X =	12.505 ; Y =	35	.511 ;	and	Radius	=	35.473
	Factor of Safety							
÷	*** 3.823 ***							
Failure	Surface Specifie	d By 42 Coordi	nate	Point	q			
Doint	- V Curf	V Curf	nace	I OINC,	5			
POIII	- Sull	I-SULL						
NO.	(11)	(IL)						
T	6.222	2.074						
2	7.195	1.840						
3	8.173	1.634						
4	9.157	1.455						
5	10.145	1.304						
6	11 138	1 180						
0	10 100	1 004						
/	12.133	1.084						
8	13.131	1.016						
9	14.130	0.976						
10	15.130	0.964						
11	16.130	0.980						
12	17.129	1.024						
13	18 126	1 096						
14	10.120	1 105						
15	19.121	1 202						
15	20.113	1.323						
16	21.101	1.478						
17	22.084	1.660						
18	23.062	1.870						
19	24.033	2.108						
20	24,998	2.372						
21	25 954	2 663						
22	26 902	2.005						
22	20.902	2.901						
23	27.041	3.320						
24	28.770	3.696						
25	29.688	4.092						
26	30.595	4.514						
27	31.490	4.961						
28	32.371	5.433						
29	33.240	5.929						
30	34.093	6.449						
31	34 933	6 993						
3.2	35 756	7 561						
22	35.750	7.501						
33	30.503	8.151						
34	37.354	8.763						
35	38.127	9.398						
36	38.882	10.053						
37	39.619	10.730						
38	40.336	11.427						
39	41.033	12.143						
40	41.710	12.879						
41	42.367	13,634						
42	42 920	14 307						
Circle	Center $At X =$	15 062 : Y =	36	717 :	and	Radius	=	35 753
CIICIC	Eastor of Safety	13.002 / 1 =	50	• / ± / /	ana	Radius	-	55.755
	Factor of Salety							
		d Dec 46 Coordin		Deint	~			
Fallure	surface specifie	a By 46 Coordi	nate	POINC	5			
Point	z X-Suri	Y-Suri						
No.	(ft)	(ft)						
1	2.889	0.963						
2	3.879	0.826						
3	4.873	0.710						
4	5.868	0.614						
5	6.865	0.540						
6	7.864	0.487						
7	8 863	0 454						
/	0.003	0.107						
ŏ	9.003	0.443						
9	TO.803	0.453						
10	11.863	0.483						
11	12.861	0.535						
12	13.859	0.607						
13	14.854	0.701						
14	15.848	0.815						
15	16.839	0.951						

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	17.826 18.811 19.791 20.767 21.738 22.704 23.664 24.619 25.566 26.507 27.441 28.366 29.284 30.193 31.093 31.984	1.107 1.283 1.481 1.699 1.937 2.196 2.475 2.774 3.093 3.432 3.791 4.169 4.567 4.983 5.419 5.874		
32 33	32.865 33.736	6.347 6.838		
34	34.596	7.348		
35 36	35.445 36.283	8.421		
37	37.110	8.984		
38 39	37.924	9.564		
40	39.516	10.775		
41	40.292	11.406		
42 43	41.055	12.052		
44	42.539	13.393		
45 46	43.260	14.086		
Circle	Center At X =	9.907 ; Y =	48.026 ; and Radius =	47.584
	Factor of Safety	L.		
Failure	e Surface Specifie	ed By 42 Coordi	inate Points	
Detet	V Curf	N Come		
POIN	A-SULL	Y-Suri		
No.	(ft)	(ft) 1 852		
No. 1 2	(ft) 5.556 6.530	(ft) 1.852 1.628		
No. 1 2 3	(ft) 5.556 6.530 7.511	Y-SUFF (ft) 1.852 1.628 1.432		
No. 1 2 3 4 5	(ft) 5.556 6.530 7.511 8.496 9.486	Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121		
No. 1 2 3 4 5 6	(ft) 5.556 6.530 7.511 8.496 9.486 10.480	(ft) 1.852 1.628 1.432 1.263 1.121 1.008		
No. 1 2 3 4 5 6 7 8	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474	Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864		
No. 1 2 3 4 5 6 7 8 9	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474	Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833		
No. 1 2 3 4 5 6 7 8 9 10	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474	Y-SUFF (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831		
No. 1 2 3 4 5 6 7 8 9 10 11 12	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472	Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831 0.856 0.909		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472 17.469	Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831 0.856 0.909 0.991		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472 17.469 18.463 19.454	Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831 0.856 0.909 0.991 1.099		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472 17.469 18.463 19.454 20.440	Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831 0.856 0.909 0.991 1.099 1.236 1.400		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 10 17 10 10 11 12 13 14 15 16 10 10 10 10 10 10 10 10 10 10	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472 17.469 18.463 19.454 20.440 21.422	<pre>Y-Surr (ft)     1.852     1.628     1.432     1.263     1.121     1.008     0.922     0.864     0.833     0.831     0.856     0.909     0.991     1.099     1.236     1.400     1.592 </pre>		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472 17.469 18.463 19.454 20.440 21.422 22.397 23.367	Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831 0.856 0.909 0.991 1.099 1.236 1.400 1.592 1.810 2.056		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472 17.469 18.463 19.454 20.440 21.422 22.397 23.367 24.329	<pre>Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831 0.856 0.909 0.991 1.099 1.236 1.400 1.592 1.810 2.056 2.329</pre>		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472 17.469 18.463 19.454 20.440 21.422 22.397 23.367 24.329 25.283 26.228	<pre>Y-Surr (ft)     1.852     1.628     1.432     1.263     1.121     1.008     0.922     0.864     0.833     0.831     0.856     0.909     0.991     1.099     1.236     1.400     1.592     1.810     2.056     2.329     2.629     2.955</pre>		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	$\begin{array}{c} \text{(ft)}\\ 5.556\\ 6.530\\ 7.511\\ 8.496\\ 9.486\\ 10.480\\ 11.476\\ 12.474\\ 13.474\\ 14.474\\ 15.474\\ 16.472\\ 17.469\\ 18.463\\ 19.454\\ 20.440\\ 21.422\\ 22.397\\ 23.367\\ 24.329\\ 25.283\\ 26.228\\ 27.164\\ \end{array}$	Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831 0.856 0.909 0.991 1.099 1.236 1.400 1.592 1.810 2.056 2.329 2.629 2.955 3.307		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472 17.469 18.463 19.454 20.440 21.422 22.397 23.367 24.329 25.283 26.228 27.164 28.090	<pre>Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831 0.856 0.909 0.991 1.099 1.236 1.400 1.592 1.810 2.056 2.329 2.629 2.955 3.307 3.686 4.000</pre>		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472 17.469 18.463 19.454 20.440 21.422 22.397 23.367 24.329 25.283 26.228 27.164 28.090 29.908	<pre>Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831 0.856 0.909 0.991 1.099 1.236 1.400 1.592 1.810 2.056 2.329 2.629 2.955 3.307 3.686 4.089 4.519</pre>		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 27 27 27 27 27 27 27 27	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472 17.469 18.463 19.454 20.440 21.422 22.397 23.367 24.329 25.283 26.228 27.164 28.090 29.004 29.908 30.798	<pre>Y-Surr (ft)     1.852     1.628     1.432     1.263     1.121     1.008     0.922     0.864     0.833     0.831     0.856     0.909     0.991     1.099     1.236     1.400     1.592     1.810     2.056     2.329     2.629     2.955     3.307     3.686     4.089     4.519     4.973 </pre>		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472 17.469 18.463 19.454 20.440 21.422 22.397 23.367 24.329 25.283 26.228 27.164 28.090 29.004 29.908 30.798 31.676 32.540	Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831 0.856 0.909 0.991 1.099 1.236 1.400 1.592 1.810 2.056 2.329 2.629 2.955 3.307 3.686 4.089 4.519 4.973 5.452 5.955		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	(ft) 5.556 6.530 7.511 8.496 9.486 10.480 11.476 12.474 13.474 14.474 15.474 16.472 17.469 18.463 19.454 20.440 21.422 22.397 23.367 24.329 25.283 26.228 27.164 28.090 29.004 29.908 30.798 31.676 32.540 33.390	Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831 0.856 0.909 0.991 1.099 1.236 1.400 1.592 1.810 2.056 2.329 2.629 2.955 3.307 3.686 4.089 4.519 4.973 5.452 5.955 6.482		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 31 32 31 32 31 32 31 32 32 31 32 32 32 32 32 32 32 32 32 32	$\begin{array}{c} (ft) \\ 5.556 \\ 6.530 \\ 7.511 \\ 8.496 \\ 9.486 \\ 10.480 \\ 11.476 \\ 12.474 \\ 13.474 \\ 14.474 \\ 15.474 \\ 16.472 \\ 17.469 \\ 18.463 \\ 19.454 \\ 20.440 \\ 21.422 \\ 22.397 \\ 23.367 \\ 24.329 \\ 25.283 \\ 26.228 \\ 27.164 \\ 28.090 \\ 29.004 \\ 29.908 \\ 30.798 \\ 31.676 \\ 32.540 \\ 33.390 \\ 34.225 \\ 25.264 \end{array}$	Y-Surr (ft) 1.852 1.628 1.432 1.263 1.121 1.008 0.922 0.864 0.833 0.831 0.856 0.909 0.991 1.099 1.236 1.400 1.592 1.810 2.056 2.329 2.629 2.955 3.307 3.686 4.089 4.519 4.973 5.452 5.955 6.482 7.033 7.607		

34 35 36	36.633 37.401 38.151	8.821 9.462 10.123		
37	38.882	10.805		
38	39.594	11.507		
39 40	40.287	12.229		
41	41.609	13.728		
42	41.766	13.922		
Circle	Center At X =	14.063 ; Y =	36.682 ; and Radius =	35.854
*	** 3.878 ***	<del>k</del>		
Failure	Surface Specifie	ed By 40 Coord	inate Points	
Point	X-Surf	Y-Surf		
NO. 1	(it) 4 000	(it) 1 333		
2	4.965	1.072		
3	5.938	0.841		
4	6.918	0.640		
5	7.903	0.470		
7	9.888	0.222		
8	10.885	0.145		
9	11.884	0.099		
10	12.883 13.883	0.083		
12	14.882	0.146		
13	15.879	0.224		
14	16.873	0.333		
16	18.849	0.473		
17	19.828	0.845		
18	20.801	1.076		
19 20	21.766	1.338		
20	23.670	1.951		
22	24.606	2.302		
23	25.531	2.682		
∠4 25	26.444 27 344	3.090		
26	28.230	3.991		
27	29.100	4.482		
28	29.955	5.001		
30	31.615	6.116		
31	32.418	6.712		
32	33.202	7.333		
33 34	33.967	7.978		
35	35.433	9.337		
36	36.134	10.050		
37	36.813	10.785		
38 39	37.408	12.316		
40	38.493	12.831		
Circle	Center At X =	12.875 ; Y =	32.198 ; and Radius =	32.115
*	Factor of Safety	*		
Failure	Surface Specifie	ed By 43 Coord	inate Points	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
⊥ 2	6.889 7.851	2.296		
3	8.821	1.781		
4	9.798	1.566		
5	10.780	1.379		
0 7	12.759	1.092		
8	13.754	0.992		
9	14.752	0.921		

1.0	16 861	0 0 7 0			
10	15./51	0.879			
	16./51	0.866			
12	1/./51	0.883			
13	18.750	0.929			
14	19.747	1.003			
15	20.741	1.107			
16	21.732	1.240			
17	22.719	1.402			
18	23.701	1.592			
19	24.677	1.811			
20	25.646	2.059			
21	26.607	2.334			
22	27.560	2.638			
23	28.503	2.969			
24	29.437	3.327			
25	30.360	3.713			
26	31.271	4.125			
27	32.169	4.564			
28	33.055	5.029			
29	33.926	5.519			
30	34.783	6.035			
31	35.624	6.575			
32	36.449	7.140			
33	37.258	7.729			
34	38.049	8.341			
35	38.822	8.975			
36	39.575	9.632			
37	40.310	10.311			
38	41.024	11.011			
39	41.718	11.731			
40	42.390	12.472			
41	43.040	13.231			
42	43.668	14.010			
43	44.224	14.741			
Circle Cent	ter At X =	16.685 ; Y =	35.136 ;	and Radius =	34.270
Fact	tor of Safety				
* * *	3.915 **	*			
;	**** END OF G	STABL7 OUTPUT *	* * *		



Safety Factors Are Calculated By The Modified Bishop Method

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) * * * * * * * * * * * * * * * * SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 12/16/2016 Time of Run: 11:53AM Insert Name/company Here Run By: Input Data Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf5 trench backfill.in Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf5 trench backfill.OUT Unit System: English Plotted Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf5 trench backfill.PLT PROBLEM DESCRIPTION: JNF5: Trench Backfill Stability -60% Slope BOUNDARY COORDINATES 1 Top Boundaries 2 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type (ft) No. (ft) (ft) (ft) Below Bnd 10.00 100.00 70.00 0.00 1 1 100.00 60.00 2 2 0.00 0.00 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) User Specified Y-Plus Value = 25.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No.(pcf)(pcf)(psf)(deg)Param.(psf)No.1120.0125.0250.028.00.000.002160.0160.01000.045.00.000.00 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft) and X = 45.00(ft) Each Surface Terminates Between X = 50.00(ft) and X = 100.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 5.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First.  *  * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 1000 Number of Trial Surfaces With Valid FS = 1000 Statistical Data On All Valid FS Values: FS Max = 13.762 FS Min = 1.715 FS Ave = 3.331 Standard Deviation = 1.081 Coefficient of Variation = 32.44 % Failure Surface Specified By 24 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 3.182 11.909 1 2 8.001 13.241 12.785 17.532 14.694 16.266 3 4 22.237 17.958 5

	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5 7 7 9 9 1 2 3 4 5 5 7 7 3 9 9 1 2 2 3 4 4 Center	26.898 31.513 36.077 40.589 45.045 49.443 53.780 58.053 62.259 66.396 70.462 74.452 78.366 82.201 85.953 89.622 93.204 96.697 98.534 At X =	19. 21. 23. 25. 28. 30. 33. 35. 38. 41. 44. 47. 50. 53. 56. 60. 63. 67. 69. -47.345	766 692 733 887 155 534 022 619 322 130 041 053 165 374 678 075 564 141 121 ; Y =	204.186	; and Ra	adius =	198.805
		Factor	of Safet	су * * *					
		Individu	al data d	on the	23 sli	ces			
			Water	Water	Tie	Tie	Earthqu	lake	- h
Slice	Width	Weight	Тор	Bot	Norm	Tan	Hor	Ver Surt	Load
No.	(ft)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
1 2	4.8 4.8	450.9	0.0	0.0	0.	0.	0.0	0.0	0.0
3	4.7	2059.0	0.0	0.0	0.	0.	0.0	0.0	0.0
4	4.7	2720.8	0.0	0.0	0.	0.	0.0	0.0	0.0
6	4.7	3762.1	0.0	0.0	0.	0.	0.0	0.0	0.0
7	4.6	4143.6	0.0	0.0	0.	0.	0.0	0.0	0.0
8 9	4.5 4.5	4434.2	0.0	0.0	U. 0.	0. 0.	0.0	0.0	0.0
10	4.4	4751.0	0.0	0.0	0.	0.	0.0	0.0	0.0
11 12	4.3	4782.2	0.0	0.0	0.	0.	0.0	0.0	0.0
13	4.2	4605.1	0.0	0.0	0.	0.	0.0	0.0	0.0
14	4.1	4403.9	0.0	0.0	0.	0.	0.0	0.0	0.0
15 16	4.1 4.0	4132.9	0.0	0.0	U. 0.	0. 0.	0.0	0.0	0.0
17	3.9	3398.8	0.0	0.0	0.	0.	0.0	0.0	0.0
18 19	3.8	2945.3	0.0	0.0	0.	0.	0.0	0.0	0.0
20	3.7	1891.1	0.0	0.0	0.	0.	0.0	0.0	0.0
21	3.6	1301.5	0.0	0.0	0.	0.	0.0	0.0	0.0
22	3.5 1.8	678.0 96.7	0.0	0.0	U. 0.	0. 0.	0.0	0.0	0.0
	Failu	ire Surfa	ce Specii	Eied By 2	0 Coordin	nate Poir	nts		
	Poi	int :	X-Surf	Y-Sur	f				
	1	L	2.273	11.	364				
	2	2	7.151	12.	462				
	2	3 4	11.986 16.773	13. 15.	177				
	5	5	21.506	16.	790				
	6	5	26.178	18.	572				
	8	, 3	30.783	∠∪. 22.	631				
	ç	9	39.769	24.	903				
	10	) 1	44.139 48 420	27. 29	332 916				
	12	- 2	52.605	32.	652				
	13	3	56.690	35.	535				
	14 15	± 5	64.538	38. 41	ວ⊽∠ 730				
	16	5	68.291	45.	034				
	17	7	71.923	48.	470				

52.034 75.430 18 19 78.808 55.720 58.923 20 81.538 Circle Center At X = -25.959; Y = 148.250; and Radius = 139.767Factor of Safety * * * 1.749 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft)(ft) 15.909 19.545 1 20.768 20.726 2 3 25.585 22.067 4 30.355 23.566 35.072 5 25.222 б 39.733 27.033 7 44.331 28.997 31.113 8 48.861 9 53.319 33.377 57.700 10 35.787 11 61.999 38.340 12 66.211 41.035 13 70.331 43.867 14 74.356 46.834 78.280 15 49.933 16 82.099 53.159 17 85.810 56.511 89.408 18 59.983 19 92.889 63.572 20 96.250 67.274 97.073 21 68.244 Circle Center At X = -17.348 ; Y = 167.009 ; and Radius = 151.167 Factor of Safety * * * 1.766 *** Failure Surface Specified By 16 Coordinate Points X-Surf Point Y-Surf No. (ft) (ft) 12.273 17.364 1 2 17.244 17.897 3 22.173 18.740 19.888 4 27.039 5 31.824 21.339 б 36.509 23.085 25.121 7 41.076 8 45.507 27.437 9 49.784 30.026 10 53.892 32.877 11 57.814 35.979 12 61.534 39.319 13 65.038 42.886 14 68.313 46.664 15 71.346 50.639 16 73.765 54.259 6.249 ; Y = 97.095 ; and Radius = 79.958 Circle Center At X = Factor of Safety 1.772 *** * * * Failure Surface Specified By 17 Coordinate Points Point X-Surf Y-Surf (ft) (ft) No. 6.364 1 13.818 2 11.327 14.426 16.245 15.327 3 4 21.100 16.519 5 17.998 25.877 б 30.557 19.758 7 35.124 21.794 8 39.561 24.097 9 43.855 26.660 10 47.988 29.474 11 51.946 32.529 12 55.716 35.813

59.283 13 39.317 14 62.637 43.025 65.763 15 46.927 16 68.652 51.008 17 68.834 51.301 Circle Center At X = -1.360 ; Y = 97.512 ; and Radius = 84.049 Factor of Safety 1.777 *** * * * Failure Surface Specified By 17 Coordinate Points X-Surf Point Y-Surf No. (ft) (ft) 1 30.909 28.545 2 35.851 29.307 40.746 3 30.327 45.580 4 31.603 5 50.340 33.132 34.910 б 55.014 7 59.587 36.930 39.189 64.048 8 9 68.384 41.679 10 72.583 44.394 11 76.633 47.326 12 80.523 50.467 53.809 13 84.242 14 87.781 57.341 15 91.129 61.055 94.277 16 64.940 96.371 17 67.823 18.921 ; Y = Circle Center At X = 122.780 ; and Radius = 94.994 Factor of Safety * * * 1.780 *** Failure Surface Specified By 22 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 12.727 17.636 1 2 17.558 18.926 3 22.349 20.357 27.096 4 21.927 5 31.795 23.635 6 36.443 25.479 7 41.034 27.458 8 45.566 29.571 9 50.034 31.815 10 54.435 34.189 58.764 36.690 11 12 63.019 39.317 13 67.195 42.066 14 71.289 44.937 15 75.297 47.926 79.216 51.031 16 17 83.043 54.249 18 86.774 57.577 19 90.407 61.013 93.937 20 64.553 21 97.363 68.195 97.785 2.2 68.671 Circle Center At X = -28.975 ; Y = 183.540 ; and Radius = 171.065 Factor of Safety * * * 1.783 *** Failure Surface Specified By 16 Coordinate Points X-Surf Y-Surf Point No. (ft) (ft) 22.000 1 20.000 2 24.972 22.526 3 29.901 23.369 4 34.765 24.528 5 39.544 25.996 6 44.220 27.768 7 48.772 29.836 8 53.182 32.192

34.826 9 57.432 10 61.504 37.728 11 65.381 40.884 69.048 12 44.284 13 72.489 47.911 75.690 51.752 14 15 78.639 55.790 16 80.071 58.042 Circle Center At X = 14.357 ; Y = 99.486 ; and Radius = 77.691 Factor of Safety * * * 1.787 *** Failure Surface Specified By 18 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 18.636 1 21.182 2 23.563 22.035 28.442 3 23.127 4 33.262 24.457 38.011 5 26.021 6 42.678 27.816 7 47.252 29.836 8 51.721 32.078 9 56.075 34.536 10 60.304 37.203 11 64.397 40.075 12 68.345 43.143 13 72.139 46.400 14 75.768 49.839 15 79.225 53.452 82.501 57.229 16 17 85.588 61.162 85.824 18 61.494 3.695 ; Y = 122.231 ; and Radius = 102.148 Circle Center At X = Factor of Safety *** 1.789 *** Failure Surface Specified By 15 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 20.455 22.273 2 25.438 22.682 30.380 23.441 3 4 35.256 24.547 5 40.042 25.994 6 44.714 27.774 7 49.249 29.880 8 53.624 32.301 9 57.818 35.024 10 61.809 38.036 11 65.577 41.322 12 69.105 44.865 72.374 13 48.648 14 75.368 52.653 78.056 15 56.834 Circle Center At X = 93.054 ; and Radius = 70.858 17.156 ; Y = Factor of Safety *** 1.798 *** **** END OF GSTABL7 OUTPUT ****



JNF6: Trench Backfill Stability - 63% Slope

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) ***** SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ***** Analysis Run Date: 12/16/2016 Time of Run: 11:54AM Run By: Insert Name/company Here y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif Input Data Filename: ic Stabilization\JNF Slope Stability\jnf6 trench backfill.in Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf6 trench backfill.OUT Unit System: English Plotted Output Filename: y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf6 trench backfill.PLT PROBLEM DESCRIPTION: JNF6: Trench Backfill Stability -63% Slope BOUNDARY COORDINATES 1 Top Boundaries 2 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type (ft) (ft) No. (ft) (ft) Below Bnd 10.00 100.00 73.00 1 0.00 1 2 0.00 0.00 100.00 63.00 2 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) User Specified Y-Plus Value = 25.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (deg) Param. (psf) No. No. (pcf) (pcf) (psf) 28.0 45.0 1 120.0 125.0 250.0 0.00 0.0 0 2 160.0 160.0 1000.0 0.00 0.0 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft) and X = 45.00(ft)Each Surface Terminates Between X = 50.00(ft)and X = 100.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 5.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 1000 Number of Trial Surfaces With Valid FS = 1000 Statistical Data On All Valid FS Values: FS Max = 14.523 FS Min = 1.647 FS Ave = 3.160 Standard Deviation = 1.055 Coefficient of Variation = 33.39 % Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 10.455 1 16.586 2 15.342 17.642 18.894 3 20.183 4 24.969 20.340 5 29.693 21.979

	6 7		34.347 38.923	23. 25.	806 820				
	8		43.415 47 814	28.	017 394				
	10		52.113	32.	946				
	11 12		56.306 60.386	35. 38.	670 560				
	13		64.346	41.	613				
	14		71.880	44. 48.	824 186				
	16 17		75.442 78.859	51. 55	695 345				
	18		82.126	59.	130				
	19 20		85.238 86.128	63. 64.	043 261				
	Circl	e Center Factor	At X =	-13.187	; Y =	138.008	; and Ra	dius =	123.702
		***	L.647 *	-y ***					
		Individua	al data d Water	on the Water	19 sli Tie	ces Tie	Earthqu	ake	
Cliac	width	Woight	Force	Force	Force	Force	Ford	e Surc	harge
No.	(ft)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
1 2	4.9 4 8	593.3 1697 5	0.0	0.0	0.	0.	0.0	0.0	0.0
3	4.8	2645.2	0.0	0.0	0.	0.	0.0	0.0	0.0
4 5	4.7 4.7	3434.7 4065.8	0.0	0.0	0. 0.	0. 0.	0.0	0.0	0.0
6	4.6	4539.9	0.0	0.0	0.	0.	0.0	0.0	0.0
8	4.5	5031.5	0.0	0.0	0.	0.	0.0	0.0	0.0
9 10	4.3 4.2	5060.0 4953.4	0.0	0.0	0. 0.	0. 0.	0.0	0.0	0.0
11	4.1	4721.0	0.0	0.0	0.	0.	0.0	0.0	0.0
12 13	4.0 3.8	43/3.3 3922.4	0.0	0.0	0.	U. 0.	0.0	0.0	0.0
14 15	3.7	3381.1	0.0	0.0	0.	0.	0.0	0.0	0.0
16	3.4	2085.2	0.0	0.0	0.	0.	0.0	0.0	0.0
17 18	$3.3 \\ 3.1$	1361.7 609.9	0.0	0.0	0. 0.	0. 0.	0.0	0.0	0.0
19	0.9	35.1	0.0	0.0	0.	0.	0.0	0.0	0.0
	Poi	nt 2	k-Surf	Y-Sur	f	nate Poli	lls		
	No 1	•	(ft) 10.909	(ft) 16.	873				
	2		15.724	18.	221				
	3 4		20.498	19. 21.	708 331				
	5		29.907 34 536	23. 24	090 982				
	7		39.107	27.	007				
	8		43.619 48.067	29. 31.	162 446				
	10		52.447	33.	857				
	12		50.750 60.990	36. 39.	052				
	13 14		65.146 69.221	41. 44.	832 730				
	15		73.210	47.	744				
	16 17		//.112 80.921	50. 54.	8/1 110				
	18		84.636	57.	456 908				
	20		91.770	64.	463				
	21 22		95.182 98.488	68. 71.	117 868				
	23 Circl	a Contor	98.802	72.	245 : v -	18/ 027	: and Do	diug -	172 050
	CIICI	Factor	of Safet	-33.570 CY	, T =	104.93/	, and Ka	arus =	T13.030

*	** 1.652 ***	r -				
Failure	Surface Specifie	ed By 19 Coord	inate Po	ints		
Point	X-Surf	Y-Surf				
NO.	(It) 25.000	(It)				
1	25.909	20.323				
2	30.007	27.329				
4	40 445	20.331				
5	45 167	31 631				
5	49 811	33 483				
7	54 369	35 539				
8	58.831	37.794				
9	63,190	40.244				
10	67.436	42.884				
11	71.561	45.710				
12	75.557	48.715				
13	79.416	51.894				
14	83.131	55.240				
15	86.695	58.748				
16	90.100	62.409				
17	93.340	66.217				
18	96.408	70.165				
19	97.140	71.198				
Circle	Center At X =	5.606 ; Y =	137.57	3 ; and 3	Radius =	113.088
	Factor of Safety					
*	** 1.675 ***					
Failure	Surface Specifie	ed By 24 Coord	inate Po	ints		
Point	X-Suri	Y-SUTI				
NO. 1	(LL) 2 192	(IL) 12 00E				
⊥ 2	7 042	12.005				
2	12 667	15 171				
4	17 352	16 917				
5	21 995	18 771				
6	26.595	20.731				
7	31.148	22.797				
8	35.653	24.968				
9	40.106	27.242				
10	44.505	29.617				
11	48.849	32.094				
12	53.134	34.670				
13	57.359	37.345				
14	61.520	40.116				
15	65.617	42.982				
16	69.647	45.942				
17	73.607	48.994				
18	77.496	52.137				
19	81.312	55.368				
20	85.052	58.687				
21	88.714	62.091				
22	92.297	65.5/8				
23	95./98 00 EE2	69.148 72.090				
24 Circlo	90.555 Contor At V -	72.009	210 06	1 • and •	Podiua -	216 672
CITCLE	$\begin{array}{rcl} \text{Center At } X = & - \\ \text{Factor of Safety} \end{array}$	-00.051 / 1 =	219.00	ı, anu .	Radius =	210.072
*	** 1 683 ***	*				
Failure	Surface Specifie	d By 18 Coord	inate Po	ints		
Point	X-Surf	Y-Surf	111400 10	11100		
No.	(ft)	(ft)				
1	24.545	25.464				
2	29.445	26.460				
3	34.294	27.681				
4	39.082	29.122				
5	43.798	30.782				
6	48.434	32.655				
7	52.979	34.740				
8	57.423	37.030				
9	61.758	39.522				
10	65.974	42.210				
11	70.062	45.089				

12 74.014 48.151 77.822 13 51.392 14 81.477 54.804 84.972 15 58.380 16 88.299 62.112 17 91.451 65.993 18 93.691 69.026 Circle Center At X = 5.314 ; Y = 132.649 ; and Radius = 108.897 Factor of Safety 1.694 *** * * * Failure Surface Specified By 21 Coordinate Points X-Surf Point Y-Surf No. (ft) (ft) 15.909 20.023 1 20.734 2 21.334 3 25.514 22.800 30.245 4 24.418 5 34.922 26.187 39.539 6 28.105 7 44.093 30.170 8 48.578 32.380 9 52.990 34.732 10 57.325 37.225 39.855 61.577 11 42.620 12 65.743 13 69.817 45.518 73.797 14 48.544 15 77.678 51.697 16 81.456 54.972 17 85.127 58.367 18 88.687 61.878 19 92.133 65.501 20 95.461 69.233 21 97.063 71.150 Circle Center At X = -22.585; Y = 171.157; and Radius = 155.959Factor of Safety * * * 1.694 *** Failure Surface Specified By 22 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 13.182 18.305 1 2 17.986 19.689 22.748 27.464 21.214 3 4 22.876 32.129 5 24.676 6 36.739 26.611 7 41.291 28.680 30.880 8 45.781 9 50.204 33.211 10 54.558 35.670 11 58.838 38.254 12 63.041 40.963 13 67.163 43.793 14 71.201 46.742 75.150 15 49.808 79.009 52.987 16 17 82.774 56.278 86.440 18 59.677 19 90.006 63.182 20 93.468 66.790 96.824 70.497 21 22 97.751 71.583 Circle Center At X = -31.793 ; Y = 183.451 ; and Radius = 171.161 Factor of Safety * * * 1.699 *** Failure Surface Specified By 17 Coordinate Points X-Surf Point Y-Surf No. (ft) (ft) 1 1.818 11.145 2 6.755 11.938

3 11.639 13.011 16.453 14.360 4 5 21.183 15.980 б 25.813 17.868 7 30.328 20.016 8 34.714 22.417 38.956 9 25.064 10 43.040 27.949 46.953 31.061 11 12 50.683 34.391 13 54.217 37.928 14 57.544 41.660 15 60.654 45.576 16 63.535 49.662 17 63.909 50.263 Circle Center At X = -9.628; Y =98.191 ; and Radius = 87.795 Factor of Safety *** 1.717 *** Failure Surface Specified By 16 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 16.818 20.595 1 2 21.777 21.238 26.683 3 22.200 4 31.517 23.478 5 36.258 25.066 6 40.886 26.958 7 45.382 29.146 8 49.727 31.621 9 53.902 34.372 10 57.890 37.388 61.675 11 40.655 12 65.239 44.162 13 68.569 47.891 14 71.651 51.829 15 74.471 55.958 75.375 57.487 16 Circle Center At X = 9.452 ; Y = 97.207 ; and Radius = 76.965 Factor of Safety *** 1.725 *** Failure Surface Specified By 16 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 20.000 22.600 24.944 2 23.344 3 29.835 24.385 4 34.653 25.719 5 39.383 27.341 б 44.007 29.245 7 48.507 31.424 8 52.868 33.870 9 57.073 36.574 10 61.108 39.527 64.958 11 42.718 12 68.608 46.135 72.046 49.765 13 14 75.259 53.597 78.235 15 57.614 80.083 16 60.452 Circle Center At X = 10.183 ; Y = 104.794 ; and Radius = 82.778 Factor of Safety 1.729 *** * * * **** END OF GSTABL7 OUTPUT ****



Safety Factors Are Calculated By The Modified Bishop Method

## Spoil Stockpile Profile - 50% Slope

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. 12/20/2016 Analysis Run Date: Time of Run: 02:30PM Run By: Username Input Data Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\spoil stockpile profile 50 pct.in Output Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\spoil stockpile profile 50 pct.OUT English Unit System: Plotted Output Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\spoil stockpile profile 50 pct.PLT PROBLEM DESCRIPTION: Spoil Stockpile Profile - 50% Slope BOUNDARY COORDINATES 1 Top Boundaries 2 Total Boundaries X-Left Boundary Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 0.00 10.00 500.00 260.00 1 1 2 0.00 0.00 500.00 250.00 2 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Param. (psf) No. (pcf) (pcf) (psf) (deg) No. 110.0 115.0 200.0 24.0 0.00 0.0 0 1 500.0 45.0 160.0 160.0 0.00 0.0 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 5000 Trial Surfaces Have Been Generated. 50 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft)and X = 240.00(ft)Each Surface Terminates Between X = 260.00(ft)X = 500.00(ft)and Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft)10.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 5000 Number of Trial Surfaces With Valid FS = 5000 Statistical Data On All Valid FS Values: FS Max = 6.363 FS Min = 1.581 FS Ave = 2.973 Standard Deviation = 0.518 Coefficient of Variation = 17.41 % Failure Surface Specified By 37 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 9.697 1 14.848 19.038 18.417 2 28.359 3 22.040 25.716 4 37.659 5 46.937 29.446 6 56.194 33.230

	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 37 Circl	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65.428 74.641 83.830 92.997 02.140 11.260 20.356 29.428 38.476 47.498 56.496 65.468 74.415 83.336 92.230 01.098 09.939 18.753 27.539 36.298 45.029 53.731 62.405 71.050 79.665 88.252 96.808 05.335 13.831 22.296 23.802 At X =	37. 40. 44. 48. 52. 57. 61. 65. 69. 73. 78. 82. 87. 91. 100. 105. 100. 105. 110. 124. 129. 134. 139. 144. 149. 155. 160. 165. 170. 171. -603.454	067 957 901 897 947 049 204 411 670 982 346 761 229 748 318 940 613 337 112 937 813 739 716 742 819 945 120 345 619 942 901 ; Y =	1633.829	; and Rac	lius =	1731.200
		Factor *** 1	of Safe	су * * *					
		Individua	Uata ( Water	Water	36 sli Tie	ces Tie	Earthqua	ake	abawaa
Slice No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	Width (ft) 9.3 9.3 9.3 9.2 9.2 9.2 9.2 9.2 9.2 9.1 9.1 9.1 9.1 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	Weight (1bs) 566.2 1661.8 2686.7 3641.1 4525.4 5340.0 6085.1 6761.1 7368.5 7907.6 8378.9 8782.8 9119.8 9390.3 9594.8 9733.7 9807.8 9817.3 9762.9 9645.2 9464.6 9221.9 8917.6 8552.3 8126.6 7641.3	Top (lbs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Bot (lbs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Norm (1bs) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Tan (lbs) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Hor (lbs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Ver (lbs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Load (1bs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
27 28 29 30 31	8.7 8.6 8.6 8.6 8.6	6494.1 5833.6 5116.2 4342.4	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0. 0. 0. 0.	0. 0. 0. 0.	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0

TIDDOTT DECOUNTIE DECETTE DE DECIOUT IGNE	Y:spoil	stockpile	profile	50	pct.OUT	Page	3
-------------------------------------------	---------	-----------	---------	----	---------	------	---

32 33 34	8.6 35 8.5 26 8.5 16	13.1 0.0 29.1 0.0 90.9 0.0	0.0 0.0 0.0	0. 0. 0.	0. 0. 0.	0.0 0.0 0.0	0.0 0.0	0.0 0.0
35	8.5 69	99.5 0.0	0.0	0.	0.	0.0	0.0	0.0
36	1.5	17.1 0.0	0.0	0.	0.	0.0	0.0	0.0
	Failure Su	urface Specifi	ed By 29 Co	ordinate	e Points	5		
	Point	X-Surt	Y-Surf					
	1	152.727	86,364					
	2	162.161	89.682					
	3	171.562	93.090					
	4	180.930	96.588					
	5	190.265	100.1/5 103 851					
	7	208.829	107.615					
	8	218.057	111.468					
	9	227.248	115.409					
	10 11	236.401 245 515	123 552					
	12	254.589	127.754					
	13	263.623	132.042					
	14	272.615	136.416					
	15 16	281.566	140.876					
	17	299.337	150.051					
	18	308.156	154.765					
	19	316.930	159.563					
	20	325.657	164.445 169 410					
	22	342.971	174.457					
	23	351.555	179.586					
	24	360.090	184.797					
	25 26	308.575	190.089 195 462					
	27	385.391	200.915					
	28	393.721	206.448					
	29 Circle Co	396.038	208.019	- 1076	. 00E ·	and Dad	ina - 10	10 010
	Fac	ctor of Safety	190.392 / 1	- 1070	0.020 /	anu kau.	ius – 10	40.210
	* * *	1.591 **	*					
	Failure Su	urface Specifi	ed By 29 Co	ordinate	e Points	3		
	No	X-SUFL (ft)	(ft)					
	1	196.364	108.182					
	2	205.784	111.537					
	3	215.173	114.977					
	4 5	224.531 233 856	122 115					
	6	243.148	125.812					
	7	252.405	129.593					
	8	261.628	133.459					
	10	270.815	141.442					
	11	289.079	145.559					
	12	298.154	149.759					
	13	307.190	154.041					
	15	325.144	162.853					
	16	334.060	167.381					
	17	342.935	171.991					
	18	351.766	1/6.682					
	20	369.299	186.304					
	21	377.999	191.234					
	22	386.654	196.244					
	23	395.262 403 824	201.333					
	25	412.338	211.745					
	26	420.804	217.068					
	27	429.221	222.467					

227.943 28 437.588 29 442.661 231.331 Circle Center At X = -166.333; Y = 1141.543; and Radius = 1095.164 Factor of Safety 1.604 *** * * * Failure Surface Specified By 36 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 55.758 37.879 2 65.096 41.455 74.414 3 45.086 4 83.710 48.771 5 92.984 52.511 6 102.236 56.306 7 111.466 60.155 8 120.672 64.059 9 129.856 68.016 10 139.016 72.028 76.093 11 148.152 12 157.265 80.212 13 166.352 84.385 175.416 14 88.611 15 184.454 92.890 97.223 16 193.466 17 202.454 101.608 18 211.415 106.046 19 220.350 110.537 20 229.258 115.081 21 238.139 119.677 124.325 22 246.993 23 255.820 129.025 24 264.619 133.776 25 273.390 138.580 26 282.132 143.435 27 148.342 290.845 299.530 153.299 28 29 158.308 308.185 163.368 30 316.811 31 325.406 168.478 32 333.972 173.639 342.507 178.850 33 34 351.011 184.111 35 359.484 189.422 36 361.851 190.926 Circle Center At X = -546.883; Y = 1625.777; and Radius = 1698.410 Factor of Safety 1.604 *** * * * Failure Surface Specified By 26 Coordinate Points X-Surf Y-Surf Point No. (ft) (ft) 82.424 1 51.212 2 91.891 54.434 3 101.320 57.765 4 110.710 61.203 5 120.061 64.748 129.370 6 68.399 7 138.638 72.157 8 147.861 76.020 9 157.040 79.989 10 166.173 84.062 175.259 88.239 11 12 184.296 92.520 13 193.284 96.904 14 202.221 101.390 15 211.106 105.979 219.939 110.668 16 17 228.717 115.458 18 237.439 120.348 19 246.106 125.338 20 254.715 130.426

21 263.265 135.612 271.755 22 140.895 23 280.184 146.276 24 288.551 151.752 25 296.856 157.323 302.741 26 161.371 Circle Center At X = -194.572; Y = 880.601 ; and Radius = 874.421 Factor of Safety 1.605 *** * * * Failure Surface Specified By 29 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 1 230.303 125.151 239.719 128.519 2 3 249.105 131.970 4 258.459 135.505 5 267.781 139.124 6 277.071 142.826 7 286.327 146.611 8 295.548 150.479 9 304.735 154.429 10 313.886 158.461 11 323.001 162.575 12 332.078 166.771 171.047 13 341.117 14 350.118 175.405 15 359.079 179.842 16 368.001 184.360 17 376.881 188.958 385.720 193.635 18 19 394.517 198.390 203.225 20 403.271 21 411.981 208.137 22 420.647 213.127 218.195 23 429.268 437.843 24 223.340 25 446.371 228.561 26 454.853 233.858 27 463.287 239.231 28 471.672 244.680 478.786 29 249.393 Circle Center At X = -141.077 ; Y = 1178.565 ; and Radius = 1116.961 Factor of Safety * * * 1.605 *** Failure Surface Specified By 29 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 84.848 52.424 1 2 94.275 55.762 3 103.670 59.189 4 113.031 62.704 5 122.359 66.308 б 131.653 70.001 7 140.911 73.781 8 77.648 150.132 9 159.317 81.603 10 168.464 85.645 11 177.572 89.773 93.988 12 186.641 13 195.669 98.288 14 204.656 102.673 15 213.601 107.143 222.504 16 111.698 17 231.363 116.337 18 240.177 121.060 248.946 19 125.866 20 257.670 130.755 21 266.347 135.726 22 274.976 140.779 23 283.557 145.914

24 292.089 151.130 300.571 25 156.426 26 309.003 161.802 317.383 27 167.259 28 325.712 172.794 326.059 29 173.030 Circle Center At X = -262.745; Y = 1049.142; and Radius = 1055.589Factor of Safety 1.608 *** * * * Failure Surface Specified By 33 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 42.727 1 65.455 74.816 2 46.242 3 84.154 49.822 4 93.467 53.465 5 102.754 57.171 б 112.016 60.942 7 121.252 64.775 8 130.462 68.672 9 139.645 72.631 10 148.800 76.654 11 157.928 80.739 167.027 12 84.886 13 176.098 89.096 14 185.140 93.367 15 97.701 194.152 16 203.134 102.096 17 212.086 106.552 18 221.008 111.070 19 229.898 115.648 238.757 20 120.288 21 247.583 124.988 22 256.378 129.748 23 265.139 134.568 24 273.868 139.448 25 282.562 144.388 26 291.223 149.387 27 299.849 154.446 28 308.441 159.563 29 316.997 164.739 30 325.518 169.974 31 334.002 175.266 32 342.450 180.617 346.703 33 183.352 Circle Center At X = -443.274; Y = 1411.833; and Radius = 1460.567Factor of Safety * * * 1.617 *** Failure Surface Specified By 18 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 152.727 86.364 2 162.394 88.923 3 171.989 91.741 181.504 94.817 4 190.933 5 98.149 6 200.268 101.733 7 209.504 105.567 8 109.649 218.633 9 227.648 113.976 10 236.544 118.544 11 245.314 123.350 128.390 12 253.950 13 262.448 133.662 14 270.801 139.161 279.002 144.882 15 16 287.046 150.823 294.927 17 156.978

18

Circle Center At X =

296.420

158.210

62.771 ; Y = 445.892 ; and Radius =

370.611

Y:spoil stockpile profile 50 pct.OUT Page 6

F	actor of Safe	ty						
* *	* 1.619	* * *						
Failure	Surface Speci	fied By 16 Coo:	rdinate	Point	5			
Point	X-Surf	Y-Surf						
No.	(ft)	(ft)						
1	172.121	96.061						
2	181.854	98.358						
3	191.501	100.989						
4	201.052	103.953						
5	210.495	107.244						
6	219.819	110.859						
7	229.012	114.794						
8	238.064	119.044						
9	246.964	123.604						
10	255.701	128.468						
11	264.265	133.632						
12	272.645	139.087						
13	280.832	144.829						
14	288.817	150.851						
15	296.588	157.144						
16	299.709	159.854						
Circle C	enter At X =	110.689 ; Y	= 378.	.408 ;	and	Radius	=	288.954
F	actor of Safe	ty						
* *	* 1.619	***						
	**** END OF	GSTABL7 OUTPU	Γ ****					



Safety Factors Are Calculated By The Modified Bishop Method
*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. * * * * * * * * * * * * * * * * * * Analysis Run Date: 12/20/2016 Time of Run: 02:27PM Run By: Username Input Data Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\spoil stockpile profile 65 pct.in Output Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\spoil stockpile profile 65 pct.OUT Unit System: English Plotted Output Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization/JNF Slope Stability/spoil stockpile profile 65 pct.PLT PROBLEM DESCRIPTION: Spoil Stockpile Profile - 65% Slope BOUNDARY COORDINATES 1 Top Boundaries 2 Total Boundaries X-Left Y-Left X-Right Y-Right Soil Type Boundary No. (ft) (ft) (ft) (ft) Below Bnd 1 0.00 10.00 500.00 335.00 1 0.00 500.00 325.00 2 2 0.00 Default Y-Origin = 0.00(ft)Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (pcf) No. (pcf) (psf) (deg) Param. (psf) No. 110.0 115.0 200.0 24.0 0.00 0.0 0 1 45.0 160.0 0.00 2 160.0 500.0 0.0 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 5000 Trial Surfaces Have Been Generated. 50 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft)and X = 240.00(ft)Each Surface Terminates Between X = 260.00(ft) and X = 500.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 10.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 5000 Number of Trial Surfaces With Valid FS = 5000 Statistical Data On All Valid FS Values: FS Max = 5.955 FS Min = 1.291 FS Ave = 2.253 Standard Deviation = 0.328 Coefficient of Variation = 14.53 % Failure Surface Specified By 31 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 99.394 74.606 2 108.321 79.113 117.213 3 83.688 4 126.070 88.329 5 134.893 93.038 6 143.679 97.813

	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	15 16 16 17 18 19 20 21 22 23 24 25 26 27 27 27 27 27 28 29 30 31	2.429 51.142 59.818 8.457 57.056 55.617 94.139 2.621 21.063 29.464 57.824 6.142 54.418 52.652 7.091 5.150 03.163 1.131 9.053	102. 107. 112. 127. 127. 133. 138. 143. 149. 154. 160. 165. 171. 177. 183. 188. 194. 200. 206. 212	654 561 533 571 675 843 075 372 732 157 644 195 808 483 221 020 881 802 784 827 930				
	28 29	32	26.928	212. 219. 225.	092 314				
	30 31	34 34	2.539 8.763	231. 236.	594 696				
	Circl	e Center A Factor c	at X = of Safet	-492.910 y	; Y =	1258.759	; and Ra	dius =	1324.025
		*** 1. Individual	291 * . data c	n the	30 sli	ces	Derether		
Slice No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Width (ft) 8.9 8.9 8.8 8.8 8.8 8.8 8.7 8.7 8.7 8.6 8.6 8.6 8.5 8.5 8.4 8.4 8.4 8.4 8.3 8.3 8.3	Weight (lbs) 635.8 1856.3 2979.9 4007.3 4939.4 5777.0 6521.0 7172.2 7731.7 8200.5 8579.5 8869.8 9072.6 9188.9 9219.9 9219.9 9166.8 9030.8 8813.3 8515.4	Top (lbs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Bot (1bs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Norm (1bs) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Tan (lbs) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Hor (lbs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Ver (lbs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Load (1bs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
19 20 21 22 23 24 25 26 27 28 29 30	8.2 8.2 8.1 8.1 8.0 8.0 7.9 7.8 7.8 6.2 Failu Poi No 1 2 3 4	8515.4 8138.5 7684.0 7153.3 6547.8 5868.9 5118.2 4297.1 3407.1 2449.9 1427.1 361.5 re Surface nt X- . (9 10 11 12	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 8 Coordin f 455 859 349 922	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5	130 202	89 578						
5	139 007	94 317						
7	147 769	94.317 00 120						
7	166 402	104 044						
8	150.483	100.020						
9	105.151	109.030						
10	173.772	114.097						
11	182.345	119.245						
12	190.869	124.473						
13	199.344	129.782						
14	207.769	135.169						
15	216.142	140.636						
16	224.464	146.181						
17	232.733	151.805						
18	240 949	157 505						
19	249 111	163 283						
20	257 218	160 130						
20	257.210	175 069						
21	205.270	101 074						
22	2/3.200	107 154						
∠3	281.205	18/.154						
24	289.086	193.309						
25	296.909	199.538						
26	304.673	205.840						
27	312.378	212.215						
28	316.674	215.838						
Circle	Center At X = -369	0.056 ; Y	= 1027	.748	; and	Radius	=	1062.743
	Factor of Safety							
*	** 1.300 ***							
Failure	Surface Specified	By 28 Coc	ordinate	Poin	ts			
Point	X-Surf N	-Surf	- 411400					
No	(f+)	(ft)						
1	218 182	151 818						
1 2	210.102	156 209						
2	227.107	160.200						
3	236.109	160.084						
4	245.007	165.247						
5	253.860	169.897						
6	262.668	174.632						
7	271.429	179.453						
8	280.143	184.359						
9	288.809	189.349						
10	297.426	194.423						
11	305.994	199.581						
12	314.510	204.822						
13	322.976	210.145						
14	331, 389	215.550						
15	339 749	221 037						
16	348 056	226 605						
17	356 308	220.000						
1.9	364 505	222.255						
10	272 645	237.701						
20	372.045	243.709						
20	200 756	249.075						
21	300.750	255.040						
22	396.723	201.003						
23	404.632	267.802						
24	412.481	273.999						
25	420.270	280.271						
26	427.997	286.619						
27	435.662	293.041						
28	436.340	293.621						
Circle	Center At X = -228	8.778 ; Y	= 1078	.164	; and	Radius	=	1028.537
	Factor of Safety							
*	** 1.302 ***							
Failure	Surface Specified	By 22 Coc	ordinate	Poin	lts			
Point	X-Surf N	-Surf						
No.	(ft)	(ft)						
1	181.818	128.182						
2	190.933	132.295						
3	199.983	136.548						
4	208 968	140.940						
5	217 883	145 468						
с К	226 729	150 122						
0								

7 235.501 154.933 8 244.199 159.867 9 252.821 164.934 170.133 10 261.363 11 269.825 175.462 180.920 278.204 12 13 286.498 186.506 14 294.706 192.219 15 302.825 198.057 310.853 204.019 16 17 318.789 210.103 18 326.631 216.308 19 334.377 222.633 20 342.024 229.076 21 349.572 235.636 22 356.010 241.406 Circle Center At X = -81.569; Y = 723.998; and Radius = 651,437 Factor of Safety 1.303 *** * * * Failure Surface Specified By 28 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 135.758 98.242 1 144.735 2 102.648 153.670 107.139 3 4 162.562 111.714 5 171.410 116.373 б 180.214 121.116 7 188.972 125.942 8 197.684 130.852 9 206.349 135.843 10 214.966 140.917 11 223.535 146.072 12 232.054 151.309 13 240.524 156.626 248.942 162.023 14 15 257.309 167.499 16 265.624 173.055 17 273.885 178.690 18 282.093 184.402 19 290.246 190.192 20 298.344 196.060 21 306.386 202.004 22 314.371 208.023 23 322.298 214.119 24 330.168 220.289 25 337.978 226.534 26 345.729 232.853 27 353.420 239.244 28 355.844 241.299 Circle Center At X = -323.732; Y = 1045.975; and Radius = 1053.246Factor of Safety 1.306 *** * * * Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft)1 213.333 148.667 152.601 2 222.527 3 231.640 156.718 4 240.669 161.016 5 249.611 165.494 6 258.461 170.149 7 174.981 267.216 8 275.874 179.986 9 284.429 185.163 10 190.510 292.880 301.222 196.024 11 12 309.452 201.705 13 317.567 207.548 14 325.564 213.552

15 333.439 219.715 16 341.190 226.034 17 348.812 232.506 18 356.305 239.130 19 363.663 245.901 20 365.220 247.393 Circle Center At X = 21.198 ; Y = 610.459 ; and Radius = 500.169 Factor of Safety * * * 1.313 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 191.515 134.485 138.574 2 200.641 3 209.698 142.812 4 218.685 147.198 151.730 5 227.599 б 236.438 156.407 7 245.200 161.227 8 253.881 166.191 9 262.480 171.296 10 270.994 176.540 11 279.422 181.923 287.760 187.443 12 13 296.007 193.099 14 304.160 198.889 15 204.811 312.218 16 320.178 210.865 17 328.038 217.047 335.795 18 223.357 19 343.449 229.794 350.996 20 236.354 21 358.215 242.840 Circle Center At X = -54.046 ; Y = 694.693 ; and Radius = 611.664 Factor of Safety 1.319 *** * * * Failure Surface Specified By 18 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 181.818 128.182 1 2 191.054 132.015 3 200.200 136.059 4 209.251 140.312 5 218.201 144.772 6 227.046 149.437 7 235.782 154.304 8 244.403 159.370 9 252.906 164.634 10 261.286 170.091 11 269.538 175.740 277.657 12 181.576 13 285.641 187.598 14 293.484 193.802 15 301.182 200.185 308.732 16 206.743 17 316.128 213.472 322.771 219.801 18 19.839; Y = Circle Center At X = 531.615 ; and Radius = 434.736 Factor of Safety * * * 1.321 *** Failure Surface Specified By 15 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 218.182 151.818 2 227.571 155.260 3 236.834 159.027 245.960 4 163.115 5 254.938 167.519 6 263.757 172.234

7

272.406

177.253

```
182.571
             280.875
                        188.181
             289.153
             297.230
                         194.077
            305.097
                         200.251
            312.743
                         206.695
            320.160
                         213.402
             327.339
                         220.364
            333.508
                         226.780
Circle Center At X = 124.253; Y = 422.582; and Radius = 286.593
     Factor of Safety
*** 1.322 ***
```

Y:spoil stockpile profile 65 pct.OUT Page 6

Failure	Surface Specif	ied By 36 Coord	linate Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	198.788	139.212	
2	207.620	143.901	
3	216.428	148.637	
4	225.211	153.418	
5	233.969	158.245	
6	242.701	163.117	
7	251.409	168.035	
8	260.090	172.998	
9	268.745	178.007	
10	277.374	183.060	
11	285.977	188.159	
12	294.553	193.302	
13	303.102	198.490	
14	311.624	203.722	
15	320.119	208.999	
16	328.585	214.320	
17	337.024	219.685	
18	345.435	225.094	
19	353.818	230.546	
20	362.172	236.042	
21	370.497	241.582	
22	378.794	247.165	
23	387.061	252.792	
24	395.299	258.461	
25	403.507	264.173	
26	411.685	269.928	
27	419.833	275.725	
28	427.950	281.565	
29	436.037	287.447	
30	444.094	293.371	
31	452.119	299.338	
32	460.113	305.345	
33	468.076	311.395	
34	476.007	317.486	
35	483.906	323.618	
36	490.745	328.984	
Circle (	Center At X =	-696.103 ; Y =	1835.436 ; and Radius = 1917.812
I	Factor of Safet	у	
* :	** 1.323 *	: * *	
	**** END OF	GSTABL7 OUTPUT	* * * *

8

9

10

11

12

13 14

15



Spoil Stockpile Profile - 76% Slope

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ************* Analysis Run Date: 12/20/2016 Time of Run: 02:23PM Run By: Username Input Data Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization/JNF Slope Stability/spoil stockpile profile 76 pct.in Output Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\spoil stockpile profile 76 pct.OUT Unit System: English Plotted Output Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\spoil stockpile profile 76 pct.PLT PROBLEM DESCRIPTION: Spoil Stockpile Profile - 76% Slope BOUNDARY COORDINATES 1 Top Boundaries

2 Total Boundaries X-Left Soil Type Boundarv Y-Left X-Right Y-Right No. (ft) (ft) (ft) (ft) Below Bnd 200.00 0.00 10.00 162.00 1 1 2 0.00 0.00 200.00 152.00 2 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (psf) (deg) Param. No. 115.0 110.0 1 200.0 24.0 0.00 0.0 0 45.0 2 160.0 160.0 500.0 0.00 0 0.0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 5000 Trial Surfaces Have Been Generated. 50 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft)and X = 90.00(ft)Each Surface Terminates Between X = 110.00(ft)and X = 200.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft)5.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 5000 Number of Trial Surfaces With Valid FS = 5000 Statistical Data On All Valid FS Values: FS Max = 5.846 FS Min = 1.168 FS Ave = 2.030 Standard Deviation = 0.308 Coefficient of Variation = 15.16 % Failure Surface Specified By 49 Coordinate Points X-Surf Y-Surf Point No. (ft) (ft) 1 4.545 13.455 2 8.887 15.934 3 13.215 18.439 4 17.528 20.967 21.827 23.520 5 6 26.112 26.098 30.382 7 28.700 8 34.637 31.325 9 38.877 33.975 10 43.102 36.649 47.311 11 39.347 12 51.506 42.068 13 55.685 44.814 14 59.848 47.583 63.996 15 50.375 16 68.127 53.191 17 72.243 56.030 76.342 18 58.893 19 80.426 61.778 20 84.492 64.687 88.543 21 67.619 22 92.576 70.574 23 96.593 73.551 24 100.593 76.551 25 104.576 79.574 26 108.541 82.619 27 112.490 85.687 28 116.421 88.777 29 120.334 91.889 30 124.229 95.024 31 128.107 98.180 32 131.967 101.359

	33 34 35 36 37 38 39 40 41	3     1       4     1       5     1       5     1       7     1       8     1       9     1       1     1       2     1	35.809 39.632 43.438 47.225 50.993 54.742 58.473 62.185 65.878 69.552	104. 107. 111. 114. 117. 120. 124. 127. 130. 134.	559 781 024 289 575 883 212 562 933 324				
	43 44 45	3 1 4 1 5 1	73.206 76.841 80.457	137. 141. 144.	737 170 624				
	46 47 48	5 1 7 1 8 1	84.052 87.629 91.185	148. 151. 155.	098 592 107				
	49 Circl	e Center 1 Factor	91.993 At X = of Safet	155. -431.011 tv	915 ; Y =	781.121	; and Ra	dius =	882.622
		*** 1 Individua	.168 l data (	on the	48 slid	ces	_	_	
			Water Force	Water Force	Tie Force	Tie Force	Earthqu Forc	ake e Suro	charge
Slice	Width	Weight	Top	Bot	Norm	Tan (lba)	Hor	Ver	Load
NO. 1	(IL) 4.3	(1DS) 195.8	(202) 0.0	(adr) (adr)	(adr) .0	(IDS) 0.	(adr) 0.0	(201) 0.0	(adf) 0.0
2	4.3	577.2	0.0	0.0	0.	0.	0.0	0.0	0.0
3	4.3	939.2	0.0	0.0	0.	0.	0.0	0.0	0.0
4	4.3	1282.2	0.0	0.0	0.	0.	0.0	0.0	0.0
6	4.3	1911.0	0.0	0.0	0.	0.	0.0	0.0	0.0
7	4.3	2197.3	0.0	0.0	0.	0.	0.0	0.0	0.0
8	4.2	2464.8	0.0	0.0	0.	0.	0.0	0.0	0.0
9 10	4.2	2713.9	0.0	0.0	0.	0.	0.0	0.0	0.0
11	4.2	3157.2	0.0	0.0	0.	0.	0.0	0.0	0.0
12	4.2	3351.7	0.0	0.0	0.	0.	0.0	0.0	0.0
13	4.2	3528.3	0.0	0.0	0.	0.	0.0	0.0	0.0
14 15	4.1 4 1	3687.2	0.0	0.0	0.	0.	0.0	0.0	0.0
16	4.1	3952.3	0.0	0.0	0.	0.	0.0	0.0	0.0
17	4.1	4059.0	0.0	0.0	0.	0.	0.0	0.0	0.0
18	4.1	4148.5	0.0	0.0	0.	0.	0.0	0.0	0.0
19	4.1	4221.2	0.0	0.0	0.	0.	0.0	0.0	0.0
20	4.0	4316.7	0.0	0.0	0.	0.	0.0	0.0	0.0
22	4.0	4339.8	0.0	0.0	0.	0.	0.0	0.0	0.0
23	4.0	4346.8	0.0	0.0	0.	0.	0.0	0.0	0.0
24 25	4.0	4337.9	0.0	0.0	0.	0.	0.0	0.0	0.0
26	3.9	4273.0	0.0	0.0	0.	0.	0.0	0.0	0.0
27	3.9	4217.5	0.0	0.0	0.	0.	0.0	0.0	0.0
28	3.9	4146.8	0.0	0.0	0.	0.	0.0	0.0	0.0
29	3.9	4061.2	0.0	0.0	0.	0.	0.0	0.0	0.0
31	3.9	3846.2	0.0	0.0	0.	0.	0.0	0.0	0.0
32	3.8	3717.2	0.0	0.0	0.	0.	0.0	0.0	0.0
33	3.8	3574.2	0.0	0.0	0.	0.	0.0	0.0	0.0
34	3.8	3417.4	0.0	0.0	0.	0.	0.0	0.0	0.0
35 36	3.8	3247.1 3063 4	0.0	0.0	0.	0.	0.0	0.0	0.0
37	3.7	2866.7	0.0	0.0	0.	0.	0.0	0.0	0.0
38	3.7	2657.1	0.0	0.0	0.	0.	0.0	0.0	0.0
39	3.7	2434.9	0.0	0.0	0.	0.	0.0	0.0	0.0
40 41	3.7	2200.4 1953 7	0.0	0.0	0.	0.	0.0	0.0	0.0
42	3.7	1695.3	0.0	0.0	0.	0.	0.0	0.0	0.0
43	3.6	1425.2	0.0	0.0	0.	0.	0.0	0.0	0.0
44	3.6	1143.9	0.0	0.0	0.	0.	0.0	0.0	0.0
45	3.6	851.5	0.0	0.0	0.	0.	0.0	0.0	0.0

Y:spoil stockpile profile 76 pct.OUT Page 4

46	3.6	548.3 (	.0 0.0	0.	0.	0.0	0.0	0.0
4 / 48	3.6 0.8	234.5 ( 8.6 (		0.	0.	0.0	0.0	0.0
	Failure	Surface Spe	cified By 42	Coordinat	e Points			
	Point	X-Surf	Y-Surf					
	NO. 1	(11)	5 29.3	45				
	2	29.85	4 31.7	21				
	3	34.23	4 34.1	32				
	4 5	38.55	6 36.5 7 39.0	// 57				
	6	47.26	41.5	71				
	7	51.56	44.1	19				
	8 9	55.84 60.10	46.71 5 49.3	01 16				
	10	64.34	5 51.9	66				
	11	68.56	5 54.6	48				
	12	76.93	57.3 9 60.1	04 13				
	14	81.09	4 62.8	95				
	15	85.22	6 65.7	10				
	16 17	93.42	4 71.4	36				
	18	97.48	9 74.3	48				
	19	101.53	0 77.2	92				
	20	105.54	3 83.2	75				
	22	113.51	4 86.3	14				
	23	117.46	89.3	84				
	24	121.30	0 95.6	o5 17				
	26	129.15	2 98.7	80				
	27	133.00	0 101.9	73				
	28 29	140.61	8 108.4	50				
	30	144.38	9 111.7	34				
	31	148.13	4 115.0	47				
	32 33	151.85	4 121.7	90 62				
	34	159.20	9 125.1	63				
	35	162.84		93 E 1				
	30	170.04	1 135.5	39				
	38	173.59	139.0	54				
	39	177.12	142.5	97				
	40	180.02	6 149.7	66				
	42	184.59	6 150.2	93				
	Circle	Center At X	= -272.977	; Y = 58	7.189 ; a	nd Radius	= 6	32.654
	*	** 1.168	***					
	Failure	Surface Spe	cified By 45	Coordinat	e Points			
	Point	X-Suri (ft)	Y-Suri					
	1	10.00	17.6	00				
	2	14.36	2 20.0	43				
	3 4	18.70	9 22.5	15 15				
	5	27.35	3 27.5	43				
	6	31.65	0 30.0	98				
	8	40.19	5 35.2	82 93				
	9	44.44	.2 37.9	32				
	10	48.67	40.5	98 01				
	11 12	52.88 57.08	43.2 0 46.0	91 12				
	13	61.25	48.7	60				
	14 15	65.41	6 51.5	35 37				
	16	73.68	0 57.1	65				

17	77.785	60.020			
18	81.871	62.902			
19	85.938	65.810			
20	89.987	68.745			
21	94.016	71.705			
22	98.026	74.692			
23	102 016	77 705			
23	105 987	80 743			
24	100 029	00.745			
25	112 070	03.007			
20	113.870	86.897			
27	11/./81	90.012			
28	121.672	93.152			
29	125.542	96.317			
30	129.392	99.508			
31	133.221	102.723			
32	137.029	105.963			
33	140.816	109.227			
34	144.582	112.517			
35	148.327	115.830			
36	152.050	119,168			
37	155 751	122 529			
38	159 /30	125 015			
20	162 099	120.224			
39	163.088	129.324			
40	166.723	132.757			
41	170.336	136.214			
42	173.926	139.693			
43	177.494	143.196			
44	181.039	146.722			
45	184.542	150.252			
Circle	Center At X = -36	4.951 ; Y =	692.114	; and Radius =	= 771.723
	Factor of Safety				
*	** 1.174 ***				
Failure	Surface Specified	By 38 Coord	inate Poir	nts	
Point	X-Surf	Y-Surf			
No.	(ft)	(ft)			
	$(= \pm )$	(20)			
1	19.091	24.509			
1 2	19.091 23.524	24.509			
1 2 3	19.091 23.524 27.935	24.509 26.821 29.176			
1 2 3 4	19.091 23.524 27.935 32.323	24.509 26.821 29.176 31.573			
1 2 3 4 5	19.091 23.524 27.935 32.323 36.688	24.509 26.821 29.176 31.573 34.012			
1 2 3 4 5	19.091 23.524 27.935 32.323 36.688 41.029	24.509 26.821 29.176 31.573 34.012 36.492			
1 2 3 4 5 6 7	19.091 23.524 27.935 32.323 36.688 41.029 45.347	24.509 26.821 29.176 31.573 34.012 36.492 39.014			
1 2 3 4 5 6 7 8	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640	24.509 26.821 29.176 31.573 34.012 36.492 39.014			
1 2 3 4 5 6 7 8	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 52.909	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577			
1 2 3 4 5 6 7 8 9	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181			
1 2 3 4 5 6 7 8 9 10	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826			
1 2 3 4 5 6 7 8 9 10 11	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511			
1 2 3 4 5 6 7 8 9 10 11 12	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369 66.561	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237			
1 2 3 4 5 6 7 8 9 10 11 12 13	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369 66.561 70.727	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002			
1 2 3 4 5 6 7 8 9 10 11 12 13 14	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369 66.561 70.727 74.866	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369 66.561 70.727 74.866 78.977	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369 66.561 70.727 74.866 78.977 83.062	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369 66.561 70.727 74.866 78.977 83.062 87.119	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369 66.561 70.727 74.866 78.977 83.062 87.119 91.147	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369 66.561 70.727 74.866 78.977 83.062 87.119 91.147 95.147	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369 66.561 70.727 74.866 78.977 83.062 87.119 91.147 95.147 99.118	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369 66.561 70.727 74.866 78.977 83.062 87.119 91.147 95.147 99.118 103.060	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369 66.561 70.727 74.866 78.977 83.062 87.119 91.147 95.147 99.118 103.060 106.972	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535 81.648			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	19.091 23.524 27.935 32.323 36.688 41.029 45.347 49.640 53.908 58.151 62.369 66.561 70.727 74.866 78.977 83.062 87.119 91.147 95.147 95.147 99.118 103.060 106.972 110.854	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 72.420 75.535 81.648 84.799			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	19.091 $23.524$ $27.935$ $32.323$ $36.688$ $41.029$ $45.347$ $49.640$ $53.908$ $58.151$ $62.369$ $66.561$ $70.727$ $74.866$ $78.977$ $83.062$ $87.119$ $91.147$ $95.147$ $99.118$ $103.060$ $106.972$ $110.854$ $114.706$	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535 81.648 84.799 87.987			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	19.091 $23.524$ $27.935$ $32.323$ $36.688$ $41.029$ $45.347$ $49.640$ $53.908$ $58.151$ $62.369$ $66.561$ $70.727$ $74.866$ $78.977$ $83.062$ $87.119$ $91.147$ $95.147$ $99.118$ $103.060$ $106.972$ $110.854$ $114.706$ $118.528$	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535 81.648 84.799 87.987 91.212			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	19.091 $23.524$ $27.935$ $32.323$ $36.688$ $41.029$ $45.347$ $49.640$ $53.908$ $58.151$ $62.369$ $66.561$ $70.727$ $74.866$ $78.977$ $83.062$ $87.119$ $91.147$ $95.147$ $99.118$ $103.060$ $106.972$ $110.854$ $114.706$ $118.528$ $122.318$	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535 81.648 84.799 87.987 91.212 94.473			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	19.091 $23.524$ $27.935$ $32.323$ $36.688$ $41.029$ $45.347$ $49.640$ $53.908$ $58.151$ $62.369$ $66.561$ $70.727$ $74.866$ $78.977$ $83.062$ $87.119$ $91.147$ $95.147$ $99.118$ $103.060$ $106.972$ $110.854$ $114.706$ $118.528$ $122.318$ $126.076$	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535 81.648 84.799 87.987 91.212 94.473 97.770			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	19.091 $23.524$ $27.935$ $32.323$ $36.688$ $41.029$ $45.347$ $49.640$ $53.908$ $58.151$ $62.369$ $66.561$ $70.727$ $74.866$ $78.977$ $83.062$ $87.119$ $91.147$ $95.147$ $99.118$ $103.060$ $106.972$ $110.854$ $114.706$ $118.528$ $122.318$ $126.076$ $129.804$	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535 81.648 84.799 87.987 91.212 94.473 97.770			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20	19.091 $23.524$ $27.935$ $32.323$ $36.688$ $41.029$ $45.347$ $49.640$ $53.908$ $58.151$ $62.369$ $66.561$ $70.727$ $74.866$ $78.977$ $83.062$ $87.119$ $91.147$ $95.147$ $99.118$ $103.060$ $106.972$ $110.854$ $114.706$ $118.528$ $122.318$ $126.076$ $129.804$	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535 81.648 84.799 87.987 91.212 94.473 97.770 101.103 104.472			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20	19.091 $23.524$ $27.935$ $32.323$ $36.688$ $41.029$ $45.347$ $49.640$ $53.908$ $58.151$ $62.369$ $66.561$ $70.727$ $74.866$ $78.977$ $83.062$ $87.119$ $91.147$ $95.147$ $99.118$ $103.060$ $106.972$ $110.854$ $114.706$ $118.528$ $122.318$ $126.076$ $129.804$ $133.498$	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535 81.648 84.799 87.987 91.212 94.473 97.770 101.103 104.472 107.875			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	19.091 $23.524$ $27.935$ $32.323$ $36.688$ $41.029$ $45.347$ $49.640$ $53.908$ $58.151$ $62.369$ $66.561$ $70.727$ $74.866$ $78.977$ $83.062$ $87.119$ $91.147$ $95.147$ $99.118$ $103.060$ $106.972$ $110.854$ $114.706$ $118.528$ $122.318$ $126.076$ $129.804$ $133.498$ $137.161$	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 72.420 72.420 75.459 78.535 81.648 84.799 87.987 91.212 94.473 97.770 101.103 104.472 107.875			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	19.091 $23.524$ $27.935$ $32.323$ $36.688$ $41.029$ $45.347$ $49.640$ $53.908$ $58.151$ $62.369$ $66.561$ $70.727$ $74.866$ $78.977$ $83.062$ $87.119$ $91.147$ $95.147$ $99.118$ $103.060$ $106.972$ $110.854$ $114.706$ $118.528$ $122.318$ $126.076$ $129.804$ $133.498$ $137.161$ $140.791$	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535 81.648 84.799 87.987 91.212 94.473 97.770 101.103 104.472 107.875 111.314			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	19.091 $23.524$ $27.935$ $32.323$ $36.688$ $41.029$ $45.347$ $49.640$ $53.908$ $58.151$ $62.369$ $66.561$ $70.727$ $74.866$ $78.977$ $83.062$ $87.119$ $91.147$ $95.147$ $99.118$ $103.060$ $106.972$ $110.854$ $114.706$ $118.528$ $122.318$ $126.076$ $129.804$ $133.498$ $137.161$ $140.791$ $144.388$	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535 81.648 84.799 87.987 91.212 94.473 97.770 101.103 104.472 107.875 111.314 114.787			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	19.091 $23.524$ $27.935$ $32.323$ $36.688$ $41.029$ $45.347$ $49.640$ $53.908$ $58.151$ $62.369$ $66.561$ $70.727$ $74.866$ $78.977$ $83.062$ $87.119$ $91.147$ $95.147$ $99.118$ $103.060$ $106.972$ $110.854$ $114.706$ $118.528$ $122.318$ $126.076$ $129.804$ $133.498$ $137.161$ $140.791$ $144.388$ $147.951$	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535 81.648 84.799 87.987 91.212 94.473 97.770 101.103 104.472 107.875 111.314 114.787 118.295			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	19.091 $23.524$ $27.935$ $32.323$ $36.688$ $41.029$ $45.347$ $49.640$ $53.908$ $58.151$ $62.369$ $66.561$ $70.727$ $74.866$ $78.977$ $83.062$ $87.119$ $91.147$ $95.147$ $99.118$ $103.060$ $106.972$ $110.854$ $114.706$ $118.528$ $122.318$ $126.076$ $129.804$ $133.498$ $137.161$ $140.791$ $144.388$ $147.951$ $151.480$	24.509 26.821 29.176 31.573 34.012 36.492 39.014 41.577 44.181 46.826 49.511 52.237 55.002 57.807 60.652 63.536 66.459 69.420 72.420 75.459 78.535 81.648 84.799 87.987 91.212 94.473 97.770 101.103 104.472 107.875 111.314 114.787 118.295 121.836			

36 158.437 129.020 37 161.864 132.661 38 162.962 133.851 Circle Center At X = -220.191; Y = 488.676; and Radius = 522.213Factor of Safety * * * 1.176 *** Failure Surface Specified By 42 Coordinate Points Point X-Surf Y-Surf No. (ft)(ft) 32.727 34.873 1 2 37.117 37.267 41.488 3 39.694 4 45.841 42.155 5 50.174 44.649 6 54.489 47.175 7 58.784 49.735 8 63.060 52.326 9 67.316 54.951 10 71.552 57.607 11 75.768 60.296 12 79.963 63.016 84.137 13 65.769 14 88.290 68.553 92.422 15 71.368 74.215 16 96.532 17 100.621 77.093 80.002 18 104.688 19 82.942 108.732 20 112.754 85.913 21 116.753 88.913 22 120.730 91.945 23 124.683 95.006 24 128.613 98.097 25 132.519 101.219 26 136.402 104.369 27 140.260 107.549 28 110.759 144.094 113.997 29 147.903 30 151.688 117.264 31 155.448 120.560 159.183 32 123.885 33 162.892 127.238 130.618 166.576 34 35 170.234 134.027 137.463 36 173.866 37 177.472 140.927 38 181.051 144.419 39 184.604 147.937 40 188.130 151.482 41 191.628 155.054 42 193.739 157.241 Circle Center At X = -280.006 ; Y = 613.477 ; and Radius = 657.712 Factor of Safety 1.177 *** * * * Failure Surface Specified By 39 Coordinate Points X-Surf Point Y-Surf No. (ft) (ft) 45.455 44.545 1 2 49.869 46.893 3 54.263 49.280 4 58.636 51.704 5 62.987 54.166 6 67.317 56.667 7 71.625 59.204 8 75.911 61.780 9 80.175 64.392 10 84.415 67.041 11 88.632 69.728 12 92.826 72.451 13 96.995 75.210

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Circle	101.141 105.262 109.358 113.429 117.475 121.495 125.489 129.456 133.397 137.311 141.198 145.057 148.888 152.692 156.466 160.213 163.930 167.618 171.276 174.905 178.503 182.071 185.609 189.115 192.591 196.020 Center At X = Factor of Safe	78.005 80.837 83.704 86.607 89.545 92.518 95.526 98.569 101.646 104.758 107.903 111.082 114.295 117.541 120.819 124.131 127.475 130.851 134.259 137.699 141.171 144.673 148.207 151.771 155.366 158.975 -222.000 ; Y	= 552.7	731 ;	and	Radius	=	574.269
Failure	e Surface Spec	fied By 37 Coo	ordinate B	Points	3			
Point	X-Surf	Y-Surf						
NO.	(IT) E6 264	(IC) E2 026						
1	50.304	52.830 55 127						
2	65 219	55.137						
4	69 612	59 870						
5	73.981	62.301						
6	78.325	64.776						
7	82.646	67.293						
8	86.940	69.853						
9	91.210	72.456						
10	95.453	75.100						
11	99.670	77.787						
12	103.861	80.514						
13	108.024	83.284						
14	112.159	86.094						
15	116.267	88.945						
10 17	120.346	91.836						
18	124.396	94.700						
19	132.409	100.751						
20	136.371	103.801						
21	140.302	106.891						
22	144.202	110.019						
23	148.072	113.186						
24	151.910	116.391						
25	155.716	119.633						
26	159.489	122.913						
27	163.230	126.231						
28	100.939	122.585						
29 30	174 254	136 402						
31	177.861	139.865						
32	181.434	143.363						
33	184.972	146.896						
34	188.474	150.464						
35	191.942	154.067						
36	195.373	157.703						
37	197.803	160.331			-			
Circle	Center At X =	-1/4.062 ; Y	= 502.8	352 ;	and	Radius	=	505.579

Fact	or of Safety	7			
* * *	1.177 **	* *			
Failure Sur	face Specifi	ied By 46 Coord	inate Points		
Point	X-Surf	Y-Surf			
No.	(ft)	(ft)			
1	18.182	23.818			
2	22.539	26.271			
3	26.880	28.752			
4	31.205	31.260			
5	35.514	33.796			
б	39.808	36.359			
7	44.084	38.949			
8	48.345	41.567			
9	52.588	44.211			
10	56.815	46.882			
11	61.025	49.580			
12	65.217	52.305			
13	69.392	55.056			
14	73.550	57.833			
15	77 689	60 637			
16	81 811	63 468			
17	85 915	66 324			
18	90 001	69 206			
10	90.001	72 114			
19	94.000	72.114			
20	90.117 102 147	79.048			
21	102.147	70.000			
22	110.158	80.993			
23	114 102	84.003			
24	114.123	87.039			
25	118.076	90.100			
26	122.010	93.186			
27	125.925	96.297			
28	129.819	99.433			
29	133.694	102.593			
30	137.548	105.778			
31	141.383	108.987			
32	145.196	112.221			
33	148.989	115.478			
34	152.762	118.760			
35	156.513	122.065			
36	160.243	125.395			
37	163.953	128.748			
38	167.640	132.124			
39	171.307	135.524			
40	174.951	138.947			
41	178.574	142.393			
42	182.175	145.862			
43	185.754	149.354			
44	189.310	152.868			
45	192.845	156.405			
46	193.463	157.032			
Circle Cent	er At X = -	-366.013 ; Y =	711.262 ; ar	nd Radius =	787.518
Fact	or of Safety	7			
* * *	1.181 *	* *			
Failure Sur	face Specifi	ied By 45 Coord	inate Points		
Point	X-Surf	Y-Surf			
No.	(ft)	(ft)			
1	5.455	14.145			
2	9.817	16.589			
3	14.163	19.061			
4	18.493	21.561			
5	22,806	24,090			
5	27 102	26 647			
5 7	21 202	20.01/			
γ Q	32 216	27.232 31 Q/E			
0	20 001	21 1043 21 106			
و 10	⊥ 2/ 110	37 156			
1 U	44.117 10 220	37.T30			
10	40.33U	ンフ・054 40 Fママ			
12	52.522 EC CO7	±2.3//			
13	JO.09/	43.328			

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	60.853 64.991 69.111 73.212 77.294 81.357 85.401 89.425 93.430 97.415 101.380 105.325 109.250 113.154 117.038 120.901 124.743 128.564 132.364 132.364 136.142 139.899 143.633 147.346 151.037 154.706 158.352 161.976 165.577 169.155 172.711 176.243	$\begin{array}{c} 48.108\\ 50.914\\ 53.747\\ 56.608\\ 59.495\\ 62.409\\ 65.350\\ 68.317\\ 71.311\\ 74.331\\ 77.377\\ 80.449\\ 83.547\\ 86.670\\ 89.819\\ 92.994\\ 96.193\\ 99.418\\ 102.668\\ 105.943\\ 109.243\\ 112.567\\ 115.916\\ 119.289\\ 122.686\\ 126.107\\ 129.552\\ 133.021\\ 136.513\\ 140.029\\ 143.568\end{array}$			
44 45	176.243	145.065			
Circle (	Center At X = -	364.385 ; Y =	679.591 ;	and Radius =	761.314
*:	** 1.181 **	*			
Failure	Surface Specifi	ed By 32 Coord	inate Point	S	
Point	X-Suri (ft)	Y-Suri (ft)			
1	71.818	64.582			
2	76.318	66.762			
3	80.788	69.002			
4	85.228	71.301 73 659			
6	94.014	76.076			
7	98.359	78.550			
8	102.670	01 000			
9 10		81.082			
11	106.948 111 190	81.082 83.672 86 317			
<b>— —</b>	106.948 111.190 115.397	81.082 83.672 86.317 89.020			
12	$106.948 \\ 111.190 \\ 115.397 \\ 119.568 \\ 119.568 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.000 \\ 100.$	81.082 83.672 86.317 89.020 91.777			
12 13	106.948 111.190 115.397 119.568 123.702	81.082 83.672 86.317 89.020 91.777 94.591			
12 13 14 15	106.948 111.190 115.397 119.568 123.702 127.797 131.855	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380			
12 13 14 15 16	106.948 111.190 115.397 119.568 123.702 127.797 131.855 135.873	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380 103.356			
12 13 14 15 16 17	106.948 111.190 115.397 119.568 123.702 127.797 131.855 135.873 139.851	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380 103.356 106.385			
12 13 14 15 16 17 18	106.948 111.190 115.397 119.568 123.702 127.797 131.855 135.873 139.851 143.788	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380 103.356 106.385 109.467 112.600			
12 13 14 15 16 17 18 19 20	106.948 $111.190$ $115.397$ $119.568$ $123.702$ $127.797$ $131.855$ $135.873$ $139.851$ $143.788$ $147.685$ $151.539$	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380 103.356 106.385 109.467 112.600 115.786			
12 13 14 15 16 17 18 19 20 21	106.948 $111.190$ $115.397$ $119.568$ $123.702$ $127.797$ $131.855$ $135.873$ $139.851$ $143.788$ $147.685$ $151.539$ $155.350$	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380 103.356 106.385 109.467 112.600 115.786 119.022			
12 13 14 15 16 17 18 19 20 21 22 22	106.948 111.190 115.397 119.568 123.702 127.797 131.855 135.873 139.851 143.788 147.685 151.539 155.350 159.118	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380 103.356 106.385 109.467 112.600 115.786 119.022 122.309 125.645			
12 13 14 15 16 17 18 19 20 21 22 23 24	106.948 111.190 115.397 119.568 123.702 127.797 131.855 135.873 139.851 143.788 147.685 151.539 155.350 159.118 162.842 166.521	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380 103.356 106.385 109.467 112.600 115.786 119.022 122.309 125.645 129.031			
112 13 14 15 16 17 18 19 20 21 22 23 24 25	106.948 111.190 115.397 119.568 123.702 127.797 131.855 135.873 139.851 143.788 147.685 151.539 155.350 159.118 162.842 166.521 170.155	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380 103.356 106.385 109.467 112.600 115.786 119.022 122.309 125.645 129.031 132.465			
112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	106.948 111.190 115.397 119.568 123.702 127.797 131.855 135.873 139.851 143.788 147.685 151.539 155.350 159.118 162.842 166.521 170.155 173.743	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380 103.356 106.385 109.467 112.600 115.786 119.022 122.309 125.645 129.031 132.465 135.948 120.477			
112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	106.948 111.190 115.397 119.568 123.702 127.797 131.855 135.873 139.851 143.788 147.685 151.539 155.350 159.118 162.842 166.521 170.155 173.743 177.284 180.778	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380 103.356 106.385 109.467 112.600 115.786 119.022 122.309 125.645 129.031 132.465 135.948 139.477 143.054			
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	106.948 111.190 115.397 119.568 123.702 127.797 131.855 135.873 139.851 143.788 147.685 151.539 155.350 159.118 162.842 166.521 170.155 173.743 177.284 180.778 184.224	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380 103.356 106.385 109.467 112.600 115.786 119.022 122.309 125.645 129.031 132.465 135.948 139.477 143.054 146.677			
112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	106.948 $111.190$ $115.397$ $119.568$ $123.702$ $127.797$ $131.855$ $135.873$ $139.851$ $143.788$ $147.685$ $151.539$ $155.350$ $159.118$ $162.842$ $166.521$ $170.155$ $173.743$ $177.284$ $180.778$ $184.224$ $187.622$	81.082 83.672 86.317 89.020 91.777 94.591 97.458 100.380 103.356 106.385 109.467 112.600 115.786 119.022 122.309 125.645 129.031 132.465 135.948 139.477 143.054 146.677 150.345			

Y:spoil stockpile profile 76 pct.OUT Page 10

Circle Center At X = -89.770 ; Y = 403.819 ; and Radius = 375.756 Factor of Safety *** 1.182 *** **** END OF GSTABL7 OUTPUT ****



Safety Factors Are Calculated By The Modified Bishop Method

*** *** GSTABL7 ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) ***** SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ****** 12/20/2016 Analysis Run Date: 11:22AM Time of Run: Run By: Username Input Data Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf1 stockpile cross section.in Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif Output Filename: ic Stabilization\JNF Slope Stability\jnf1 stockpile cross section.OUT Unit System: English Plotted Output Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf1 stockpile cross section.PLT PROBLEM DESCRIPTION: Spoil Stockpile Cross Section Trench Material on Gentle Slope BOUNDARY COORDINATES 5 Top Boundaries 6 Total Boundaries X-Left Boundary Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 0.00 0.00 21.00 7.00 1 2 2 21.00 7.00 25.00 14.00 1 25.00 14.00 28.00 16.00 3 1 4 28.00 16.00 32.00 17.00 1 5 32.00 17.00 34.00 17.00 1 7.00 11.00 6 21.00 34.00 2 Default Y-Origin = 0.00(ft)Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (pcf) No. (pcf) (psf) (deg) Param. (psf) No. 110.0 115.0 200.0 24.0 0.00 0.0 0 1 45.0 160.0 160.0 500.0 0.00 2 0.0 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced Along The Ground Surface Between X = 15.00(ft)and X = 26.00(ft)Each Surface Terminates Between X = 27.00(ft) and X = 34.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 1.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 1000 Number of Trial Surfaces With Valid FS = 1000 Statistical Data On All Valid FS Values: FS Max = 68.316 FS Min = 1.795 FS Ave = 4.265 Standard Deviation = 3.300 Coefficient of Variation = 77.37 % Failure Surface Specified By 15 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 21.111 7.194 1 2 22.076 7.456

	3	}	23.016 23.922	7. 8.	799 222				
	5		24.788 25.608	8.	722 294				
	7	,	26.376	9.	935				
	e g	}	27.085	10. 11.	639 403				
	10	)	28.310	12.	218				
	11 12	-	28.815	13. 13.	081 984				
	13	8	29.595	14.	921				
	14		29.863	15. 16	884 494				
	Circl	.e Center	At $X =$	18.567	; Y =	18.509	; and Rad	ius =	11.597
		Factor	of Safet	су * * *					
		Individua	al data d	on the	16 slid	ces			
			Water	Water	Tie	Tie	Earthqua	ke	harge
Slice	Width	Weight	Top	Bot	Norm	Tan	Hor	Ver	Load
No.	(ft)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs) (	lbs)	(lbs)
2	0.9	214.7	0.0	0.0	0.	0.	0.0	0.0	0.0
3	0.9	329.9	0.0	0.0	0.	0.	0.0	0.0	0.0
4 5	0.9	419.2	0.0	0.0	0. 0.	0. 0.	0.0	0.0	0.0
6	0.6	342.5	0.0	0.0	0.	0.	0.0	0.0	0.0
·/ 8	0.8	426.2	0.0	0.0	0.	0.	0.0	0.0	0.0
9	0.6	325.9	0.0	0.0	0.	0.	0.0	0.0	0.0
10 11	0.3	127.5 137.6	0.0	0.0	0. 0.	0. 0.	0.0	0.0	0.0
12	0.5	194.2	0.0	0.0	0.	0.	0.0	0.0	0.0
13 14	0.4	128.7 73.3	0.0	0.0	0.	0.	0.0	0.0	0.0
15	0.3	30.4	0.0	0.0	0.	0.	0.0	0.0	0.0
16	0.1 Failu	3.7 The Surface	0.0 ce Specij	0.0 Fied By 1	0. 7 Coordin	0. Nate Poir	0.0 nts	0.0	0.0
	Poi	.nt 2	K-Surf	Y-Sur	f	1400 1011	100		
	NC 1	).	(ft) 21 222	(ft) 7	389				
	2	-	22.213	7.	527				
	3	5	23.188 24 141	7.	748 051				
	5		25.065	8.	432				
	6	7	25.954	8.	890 422				
	8	3	27.601	10.	022				
	9	)	28.347	10.	688 414				
	11		29.658	11.	196				
	12		30.214	13.	027				
	14		30.698	13.	902 815				
	15		31.437	15.	759				
	16	) 7	31.687 31.721	16. 16.	727 930				
	Circl	e Center	At X =	20.078	; Y =	19.204	; and Rad	ius =	11.870
		Factor	of Safei L.807	су * * *					
	Failu	re Surfac	ce Speci	ied By 1	8 Coordin	nate Poir	nts		
	Poi	.nt Σ	(ft)	Y-Sur (ft)	Í				
	1	-	21.222	7.	389				
	2		22.179	7. 8	680 015				
	4	ł	24.046	8.	394				
	5		24.953	8. a	816 280				
	7	, 1	26.702	9. 9.	785				

8 27.540 10.330 9 28.352 10.914 10 29.136 11.535 29.889 12.193 11 12 30.611 12.885 13.609 13 31.300 14.366 14 31.954 15 32.572 15.152 33.152 15.967 16 17 33.694 16.807 18 33.806 17.000 27.903 ; and Radius = 21.294 Circle Center At X = 15.515 ; Y = Factor of Safety 1.828 *** * * * Failure Surface Specified By 16 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 1 21.111 7.194 22.022 7.607 2 3 22.910 8.067 4 23.774 8.571 24.611 9.118 5 6 25.418 9.708 10.338 7 26.195 8 26.938 11.007 9 27.646 11.713 10 28.317 12.454 28.950 11 13.229 12 29.542 14.035 30.091 14.870 13 14 30.598 15.733 31.059 16.620 15 16 31.134 16.784 13.511 ; Y = Circle Center At X = 25.172 ; and Radius = 19.518 Factor of Safety 1.860 *** * * * Failure Surface Specified By 18 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 21.333 7.583 2 22.292 7.867 3 23.237 8.196 24.165 4 8.568 5 25.074 8.983 9.441 25.964 6 7 26.830 9.940 8 27.673 10.478 9 28.489 11.056 10 29.277 11.671 12.323 11 30.036 12 30.763 13.009 13 31.458 13.729 14 32.118 14.480 32.742 15 15.261 16.071 16 33.329 17 33.877 16.908 18 33.931 17.000 15.762 ; Y = Circle Center At X = 28.172 ; and Radius = 21.329 Factor of Safety * * * 1.863 *** Failure Surface Specified By 18 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 21.333 7.583 2 22.326 7.701 3 23.309 7.885 4 24.277 8.136 5 25.226 8.451 6 26.152 8.830 7 27.050 9.270

27.916 8 9.770 9 28.746 10.327 10 29.537 10.939 11 30.285 11.603 12 30.986 12.316 13.074 13 31.638 13.875 14 32.236 32.780 15 14.715 33.265 15.589 16 33.691 17 16.494 18 33.888 17.000 Circle Center At X = 20.098 ; Y = 22.307 ; and Radius = 14.776 Factor of Safety 1.864 *** * * * Failure Surface Specified By 16 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 21.444 7.778 2 22.413 8.028 3 23.363 8.338 4 24.293 8.707 5 25.197 9.134 6 26.073 9.617 10.154 7 26.916 8 27.725 10.743 9 28.494 11.381 12.066 10 29.222 29.906 11 12.796 12 30.543 13.567 31.129 14.377 13 14 31.664 15.222 16.099 32.145 15 16 32.568 17.000 17.952 ; Y = Circle Center At X = 23.309 ; and Radius = 15.919 Factor of Safety 1.870 *** * * * Failure Surface Specified By 14 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 7.778 1 21.444 2 22.431 7.942 3 23.394 8.212 24.321 8.586 4 5 25.202 9.059 9.625 26.027 6 7 26.785 10.277 8 27.467 11.008 9 28.065 11.810 10 28.572 12.671 13.583 11 28.983 12 29.291 14.534 13 29.495 15.514 29.579 14 16.395 Circle Center At X = 20.444 ; Y = 16.870 ; and Radius = 9.147 Factor of Safety 1.881 *** * * * Failure Surface Specified By 15 Coordinate Points X-Surf Point Y-Surf No. (ft) (ft) 7.583 1 21.333 22.277 7.914 2 3 23.193 8.315 4 24.077 8.783 9.316 5 24.923 б 25.727 9.911 7 26.484 10.564 8 27.190 11.272 12.031 9 27.842 10 28.434 12.836 11 28.965 13.684

14.569 29.431 12 13 29.829 15.486 16.430 14 30.158 16.547 30.189 15 Circle Center At X = 17.385 ; Y = 20.346 ; and Radius = 13.360 Factor of Safety *** 1.884 *** Failure Surface Specified By 18 Coordinate Points X-Surf Y-Surf Point No. (ft) (ft) 21.444 22.437 23.419 7.778 1 2 7.899 3 8.088 24.386 8.343 4 5 25.333 8.664 26.256 6 9.048 27.151 7 9.495 28.013 28.839 8 10.001 10.566 9 10 29.624 11.185 11 30.365 11.856 31.059 31.702 32.291 12.576 12 13 13.342 14.150 14 32.824 14.996 15 16 33.298 15.877 1733.71016.7881833.79017.000Circle Center At X =20.170 ; Y = 22.357 ; and Radius = 14.635 Factor of Safety *** 1.893 *** **** END OF GSTABL7 OUTPUT ****



**Spoil Stockpile Cross Section - Narrow Ridge** 

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) ************ SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 12/20/2016 Time of Run: 11:22AM Run By: Username Input Data Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf2 stockpile cross section.in Output Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf2 stockpile cross section.OUT Unit System: English Plotted Output Filename: Y: Design Engineering Pipeline MVP Landslide JNF Site Specif ic Stabilization\JNF Slope Stability\jnf2 stockpile cross section.PLT PROBLEM DESCRIPTION: Spoil Stockpile Cross Section -Narrow Ridge BOUNDARY COORDINATES 4 Top Boundaries 5 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type (ft) (ft) (ft) No. (ft) Below Bnd 1 0.00 0.00 21.00 14.00 2 21.00 14.00 57.00 43.00 2 1 80.00 3 57.00 43.00 45.00 1 80.00 45.00 102.00 2 4 45.00 5 21.00 14.00 80.00 45.00 2 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 24.0 1 110.0 115.0 200.0 0.00 0.0 0 500.0 45.0 160.0 160.0 0.00 0 2 0.0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 10 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced Along The Ground Surface Between X = 0.00(ft)and X = 45.00(ft)ween X = 52.00(ft)Each Surface Terminates Between and X = 102.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 5.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 1000 Number of Trial Surfaces With Valid FS = 1000 Statistical Data On All Valid FS Values: FS Max = 10.047 FS Min = 1.527 FS Ave = 4.097 Standard Deviation = 1.593 Coefficient of Variation = 38.89 % Failure Surface Specified By 10 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 26.364 18.321 1 2 31.113 19.885

21.808 35.728 3 4 40.182 24.080 5 44.449 26.687 48.503 29.614 6 7 52.320 32.843 8 55.879 36.355 40.130 9 59.157 10 61.583 43.398 8.482 ; Y = 80.703 ; and Radius = 64.894 Circle Center At X = Factor of Safety * * * 1.527 *** 10 slices Individual data on the Water Water Force Force Tie Tie Earthquake Force Force Force Surcharge Slice Width Weight Тор Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 0. 4.7 0.0 0.0 0. 0.0 590.8 0.0 0.0 1 0.0 0. 0. 2 4.6 1603.7 0.0 Ο. 0.0 0.0 0.0 0. 0.0 0.0 3 2309.6 0.0 0.0 4.5 4 4.3 2716.0 0.0 0.0 0. 0. 0.0 0.0 0.0 5 4.1 2841.3 0.0 0.0 Ο. Ο. 0.0 0.0 0.0 0.0 б 2714.5 0.0 Ο. Ο. 0.0 0.0 0.0 3.8 7 2373.9 0.0 0.0 Ο. Ο. 0.0 0.0 3.6 0.0 0.0 8 684.3 1.1 0.0 Ο. Ο. 0.0 0.0 0.0 0.0 0.0 9 998.1 0.0 Ο. Ο. 2.2 0.0 0.0 407.8 0.0 10 2.4 0.0 Ο. Ο. 0.0 0.0 0.0 Failure Surface Specified By 9 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 33.636 24.179 1 2 38.594 24.828 43.383 3 26.265 4 47.879 28.454 5 51.964 31.337 55.533 6 34.839 7 58.492 38.869 8 60.765 43.322 9 60.767 43.328 Circle Center At X = 32.106 ; Y = 55.142 ; and Radius = 31.001 Factor of Safety * * * 1.576 *** Failure Surface Specified By 9 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 35.000 25.278 1 2 39.953 25.959 3 44.777 27.277 4 49.388 29.209 5 53.710 31.723 6 57.670 34.776 7 61.200 38.317 8 64.241 42.286 9 65.058 43.701 Circle Center At X = 32.244 ; Y = 63.656 ; and Radius = 38.477 Factor of Safety *** 1.594 *** Failure Surface Specified By 12 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 15.758 1 23.182 27.623 2 18.054 20.428 3 32.024 4 36.382 22.878 5 40.698 25.403 б 44.968 28.004 7 49.193 30.678 8 53.370 33.426 57.499 36.246 9 39.138 10 61.578 11 65.606 42.100

12 68.044 43.960 Circle Center At X = -105.757 ; Y = 270.646 ; and Radius = 285.645 Factor of Safety *** 1.704 *** Failure Surface Specified By 10 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 22.715 1 31.818 2 36.502 24.465 41.099 26.431 3 45.599 4 28.610 5 49.993 30.996 6 54.271 33.584 36.369 58.424 7 8 62.442 39.344 9 66.318 42.504 10 67.933 43.951 -3.069 ; Y = Circle Center At X = 123.372 ; and Radius = 106.532 Factor of Safety *** 1.709 *** Failure Surface Specified By 8 Coordinate Points X-Surf Y-Surf Point No. (ft) (ft) 35.909 26.010 1 40.730 27.338 2 3 45.366 29.209 31.600 4 49.758 5 53.846 34.478 6 57.578 37.806 60.903 7 41.539 8 62.251 43.457 Circle Center At X = 26.961 ; Y = 68.131 ; and Radius = 43.061 Factor of Safety 1.748 *** * * * Failure Surface Specified By 9 Coordinate Points X-Surf Point Y-Surf No. (ft) (ft) 1 33.182 23.813 2 37.864 25.566 3 42.424 27.618 46.842 4 29.960 5 51.099 32.583 55.177 6 35.475 7 59.060 38.625 62.732 8 42.019 9 64.265 43.632 Circle Center At X = 8.424 ; Y = 97.083 ; and Radius = 77.340 Factor of Safety *** 1.762 *** Failure Surface Specified By 9 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 38.636 28.207 2 43.619 28.627 48.506 29.683 3 4 53.217 31.357 5 57.675 33.622 61.805 6 36.440 65.540 7 39.764 8 68.818 43.540 9 69.161 44.057 37.866 ; Y = Circle Center At X = 67.093 ; and Radius = 38.894 Factor of Safety 1.804 *** * * * Failure Surface Specified By 9 Coordinate Points X-Surf Y-Surf Point No. (ft) (ft) 34.545 1 24.912 2 39.230 26.659 3 43.837 28.602

```
30.739
    4
             48.358
    5
             52.784
                          33.064
             57.108
                          35.575
    6
    7
             61.322
                         38.266
    8
             65.419
                        41.132
9 69.254 44.066
Circle Center At X = -4.442 ; Y = 136.608 ; and Radius = 118.305
             69.254
      Factor of Safety
     *** 1.846 ***
Failure Surface Specified By 13 Coordinate Points
           X-Surf
  Point
                      Y-Surf
  No.
                         (ft)
             (ft)
             26.364
                          18.321
   1
             30.835
                         20.559
    2
    3
            35.303
                         22.802
    4
            39.769
                         25.050
    5
             44.233
                         27.304
    6
             48.693
                          29.563
                         31.827
    7
             53.151
                         34.096
    8
             57.607
   9
             62.059
                         36.371
   10
             66.509
                         38.651
   11
             70.956
                         40.936
                         43.227
   12
             75.401
             78.596
  13
                         44.878
Circle Center At X = -1871.535; Y = 3815.827; and Radius = 4245.359
      Factor of Safety *** 1.846 ***
         **** END OF GSTABL7 OUTPUT ****
```



## **Spoil Stockpile Cross Section - Sidehill**

*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 12/20/2016 Time of Run: 11:23AM Run By: Username Input Data Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf3 stockpile cross section.in Output Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf3 stockpile cross section.OUT Unit System: English Plotted Output Filename: Y:\Design Engineering\Pipeline\MVP\Landslide\JNF Site Specif ic Stabilization\JNF Slope Stability\jnf3 stockpile cross section.PLT PROBLEM DESCRIPTION: Spoil Stockpile Cross Section -Sidehill BOUNDARY COORDINATES 6 Top Boundaries 7 Total Boundaries Boundary X-Left Y-Left X-Right Soil Type Y-Right (ft) No. (ft) (ft) (ft) Below Bnd 0.00 0.00 11.00 4.00 1 2 2 11.00 4.00 17.00 13.00 1 24.00 17.00 19.00 3 13.00 1 24.00 4 19.00 37.00 25.00 1 27.00 5 37.00 25.00 71.00 1 27.00 93.00 71.00 2 27.00 6 27.00 7 11.00 4.00 71.00 2 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deq) Param. (psf) No. 115.0 24.0 45.0 1 110.0 200.0 0.00 0.0 0 2 160.0 160.0 500.0 0.00 0.0 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 1000 Trial Surfaces Have Been Generated. 100 Points Equally Spaced 10 Surface(s) Initiate(s) From Each Of Along The Ground Surface Between X = 0.00(ft)and X = 20.00(ft)Each Surface Terminates Between X = 22.00(ft)and X = 93.00(ft)Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 2.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 1000 Number of Trial Surfaces With Valid FS = 1000 Statistical Data On All Valid FS Values: FS Max = 46.336 FS Min = 1.425 FS Ave = 4.405 Standard Deviation = 2.364 Coefficient of Variation = 53.66 % Failure Surface Specified By 16 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft)

	1 2		11.515 13.412	4. 5.	773 407				
	3		15.267	6.	155				
	4		17.073	7.	013 979				
	6		20.514	9.	049				
	/ 8		22.136	10.	485				
	9		25.154	12.	842				
	10 11		26.538	14. 15.	286 810				
	12		29.034	17.	410				
	13 14		30.135	19. 20.	079 812				
	15		32.026	22.	601				
	16 Circl	e Center	32.081 At X =	22. 1 979	730 ; Y =	36 450	; and Ra	dius =	33 081
	CIICI	Factor	of Safet	ty	, 1 -	50.150	, and no	arub -	33.001
		*** <u>-</u>	1.425	***	17 ali	aoa			
			Water	Water	Tie Tie	Tie	Earthqu	lake	
	77	TT - d - le te	Force	Force	Force	Force	Forc	e Suro	charge
No.	(ft)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
1	1.9	230.6	0.0	0.0	0.	0.	0.0	0.0	0.0
∠ 3	1.9 1.7	658.7 978.7	0.0	0.0	0.	0.	0.0	0.0	0.0
4	0.1	48.6	0.0	0.0	0.	0.	0.0	0.0	0.0
5 6	$1.8 \\ 1.7$	1216.9 1259.0	0.0	0.0	U. 0.	0. 0.	0.0	0.0	0.0
7	1.6	1262.0	0.0	0.0	0.	0.	0.0	0.0	0.0
8 9	1.5 0.3	250.9	0.0	0.0	U. 0.	0. 0.	0.0	0.0	0.0
10	1.2	883.0	0.0	0.0	0.	0.	0.0	0.0	0.0
11 12	1.4	957.7 772 4	0.0	0.0	0.	0.	0.0	0.0	0.0
13	1.2	585.8	0.0	0.0	0.	0.	0.0	0.0	0.0
14 15	1.1	403.9	0.0	0.0	0.	0.	0.0	0.0	0.0
16	0.9	77.7	0.0	0.0	0.	0.	0.0	0.0	0.0
17	0.1 Failu	0.3 re Surfa	0.0 Specit	0.0 Fied By 1	0. 8 Coordiu	0. nate Poir	0.0	0.0	0.0
	Poi	nt 2	X-Surf	Y-Sur	f		100		
	No 1	•	(ft) 12 121	(ft) 5	682				
	2		14.063	6.	160				
	3		15.979 17 864	6. 7	735				
	5		19.714	8.	164				
	6		21.523	9.	016				
	8		25.005	10.	982				
	9		26.669	12.	092				
	10		28.275	13.	203 552				
	12		31.302	15.	896				
	13		34.055	17.	312 796				
	15		35.321	20.	345				
	16		36.508	21. 23.	954 620				
	18	- · ·	38.487	25.	087				
	Circl	e Center Factor	At X = of Safet	3.445 tv	; Y =	45.085	; and Ra	dius =	40.347
		***	1.447	***					
	Failu Poi	re Surfac nt	ce Speci: X-Surf	tied By 1 Y-Sur	5 Coordin f	nate Poir	nts		
	No	•	(ft)	(ft)	250				
	1 2		11.919 13.868	5. 5.	379 826				

6.436 3 15.773 4 17.620 7.203 5 19.396 8.123 б 21.089 9.188 7 22.686 10.392 8 11.725 24.177 13.179 9 25.550 10 26.797 14.743 27.908 16.406 11 12 28.876 18.156 29.693 13 19.982 14 30.354 21.869 15 30.373 21.941 Circle Center At X = 7.569 ; Y = 28.791 ; and Radius = 23.813 Factor of Safety 1.451 *** * * * Failure Surface Specified By 16 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 12.121 5.682 2 14.111 5.880 16.077 3 6.247 4 18.005 6.779 19.881 5 7.472 6 21.692 8.322 7 23.423 9.323 25.064 8 10.467 9 26.602 11.745 10 28.026 13.150 29.325 14.670 11 12 30.492 16.295 13 31.516 18.013 14 32.390 19.811 15 33.109 21.678 23.441 16 33.622 Circle Center At X = 10.785 ; Y = 29.194 ; and Radius = 23.551 Factor of Safety *** 1.462 *** Failure Surface Specified By 12 Coordinate Points X-Surf Point Y-Surf No. (ft) (ft) 1 11.717 5.076 13.689 2 5.409 3 15.599 6.003 17.411 4 6.849 5 19.095 7.929 6 20.617 9.225 7 21.953 10.714 8 23.077 12.369 9 23.969 14.159 10 24.613 16.052 11 24.997 18.015 25.085 12 19.501 Circle Center At X = 10.251 ; Y = 19.841 ; and Radius = 14.838 Factor of Safety 1.503 *** * * * Failure Surface Specified By 20 Coordinate Points X-Surf Point Y-Surf No. (ft) (ft) 1 12.121 5.682 2 13.982 6.415 3 15.827 7.187 17.655 4 7.997 5 19.467 8.846 б 21.260 9.732 7 23.034 10.655 8 24.788 11.616 9 26.522 12.612 10 28.235 13.645 11 29.925 14.713

15.817 12 31.594 13 33.238 16.955 14 34.859 18.127 36.454 19.333 15 16 38.024 20.572 17 39.568 21.843 18 41.085 23.147 19 42.574 24.482 20 43.540 25.385 Circle Center At X = -21.966 ; Y = 94.941 ; and Radius = 95.546 Factor of Safety 1.536 *** * * * Failure Surface Specified By 19 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 11.919 1 5.379 13.895 2 5.690 3 15.849 6.115 17.776 4 6.651 5 19.668 7.298 б 21.520 8.053 8.913 7 23.326 8 25.079 9.876 26.773 10.939 9 10 28.404 12.097 11 29.965 13.348 14.686 12 31.451 32.857 13 16.108 14 34.180 17.608 15 35.413 19.183 16 36.554 20.825 37.598 17 22.531 18 38.542 24.294 25.113 19 38.922 Circle Center At X = 7.512 ; Y = 39.776 ; and Radius = 34.678 Factor of Safety 1.539 *** * * * Failure Surface Specified By 16 Coordinate Points Point X-Surf Y-Surf (ft) (ft) No. 11.111 4.167 1 2 12.836 5.178 14.533 6.237 3 4 16.201 7.342 8.492 17.837 5 б 19.441 9.686 7 21.011 10.925 8 22.547 12.206 9 24.047 13.528 14.892 10 25.510 11 26.936 16.295 12 28.322 17.737 29.668 13 19.216 30.972 14 20.732 15 32.235 22.283 32.853 16 23.086 Circle Center At X = -24.734 ; Y = 67.312 ; and Radius = 72.609 Factor of Safety * * * 1.558 *** Failure Surface Specified By 11 Coordinate Points X-Surf Y-Surf Point No. (ft) (ft) 11.919 5.379 1 2 13.885 5.746 3 15.772 6.408 4 17.537 7.350 5 19.138 8.549 6 20.538 9.977 7 21.704 11.602 8 22.610 13.385

9		23.	234		1	.5.2	285												
10		23.	561		1	.7.2	258												
11		23.	578		1	.8.6	538												
Circle	Center	At	X =	1	.0.5	01	; ]	<u> </u>	=	1	.8.	414	;	and	Rad	ius	=	13.	112
	Factor	of	Safet	У															
*	** ]	1.57	19 *	* *															
Failure	Surfac	ce S	Specif	ied	l By	r 23	B Co	00	rdi	nat	e	Poir	nts	5					
Point	. Σ	K-Su	ırf		Y-S	lurf	Ē												
No.		(ft	:)		(f	t)													
1		12.	121			5.6	582												
2		14.	014			6.3	328												
3		15.	897			7.(	02												
4		17.	769			7.7	706												
5		19.	630			8.4	137												
6		21.	480			9.1	L98												
7		23.	318			9.9	986												
8		25.	144		1	.0.8	302												
9		26.	957		1	.1.6	546												
10		28.	757		1	.2.5	518												
11		30.	544		1	.3.4	117												
12		32.	316		1	.4.3	344												
13		34.	075		1	.5.2	297												
14		35.	818		1	.6.2	277												
15		37.	546		1	.7.2	283												
16		39.	259		1	.8.3	316												
17		40.	956		1	.9.3	375												
18		42.	636		2	20.4	160												
19		44.	299		2	1.5	570												
20		45.	946		2	2.7	706												
21		47.	575		2	13.8	366												
22		49.	186		2	25.0	)52												
23		50.	135		2	15.7	773												
Circle	Center	At	X =	-2	:9.2	200	; ]	ζ:	=	12	29.	898	;	and	Rad	ius	=	130.	.909
	Factor	of	Safet	y															
*	** 1	L.63	30 *	* *															
	* * * *	* EN	ID OF	GSI	ABL	J7 (	DUTI	?U'	Г*	* * *	•								